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1 Introduction

When they interact with a search engine, users typically enter short queries and there

is often ambiguity in the intent of the user. In the case of a common query such as

‘garmin gps’ a user might be interested in a variety of things ranging from places to

purchase one, reviews about it, instructions on how to use it, help with repairing the

device, or recent product news. In many cases it is not a priori clear what the intent

of the user might be and it is necessary for search engines to display a good variety

of results covering different intents to ensure that all users are satisfied, with the hope

that the user will find at least one relevant document for his information need. The

problem of the user not finding any relevant document, indicated by no clicks, is defined

as query abandonment. Current research on result set diversification mainly aims at

minimizing query abandonment by providing diversified search results in top positions

(Clarke et al., 2008; Sarma et al., 2008; Agrawal et al., 2009).

Carbonell and Goldstein (1998) proposed Maximal Marginal Relevance (MMR) for

increasing diversity. MMR uses an objective function that explicitly trades-off rele-

vance against novelty of search results. The novelty is measured through a similarity

function between documents. The level of diversity is controlled explicitly by the trade-

off parameter and implicitly by the similarity measure between the documents. The

similarity measure is the knob for controlling the saturation levels of different types of

documents (i.e. how many documents for each user intent are admitted into the result

set). The similarity measure used in MMR is query and intent independent, which

renders the control over the match between relative saturation levels and user intents

difficult at best.

Agrawal et al. (2009) and Clarke et al. (2008) circumvented this difficulty by using

document and query categories. Aligning the categories with the user intents can fa-

cilitate finer control over the representation of different topics in the diversified result

sets. In particular, Clarke et al. (2008) explicitly partitions the information needs in

so-called nuggets which can be mapped to intents in our framework. The recent paper

of Agrawal et al. (2009) can be seen as an extension of that work and is closely related

to ours. They propose an algorithm that minimizes the risk of dissatisfaction of the

average user. The work explicitly considers user intent or query topics with different

importance. However, they do not have specific intent based relevance estimates.

We approach the diversification problem in the framework of intent-based ranking,

in which each intent has a specialized ranking function for evaluating document intent-

based relevance, and query intent distribution is estimated directly from click logs.

Within that framework, a novel diversification metric – intent-aware expected recipro-

cal rank (ERR-IA) – is presented. This metric has first been introduced by Chapelle

et al. (2009, Section 7.4), but only briefly. We analyze here thoroughly its properties for

diversification and argue that it is a better metric than previously proposed metrics,

such as DCG-IA and MAP-IA (Agrawal et al., 2009). We also show that ERR-IA is a

generalization of α-NDCG (Clarke et al., 2008). It is noteworthy that ERR-IA was one

the metrics used to evaluate the diversity task in the Web track of TREC 2010.1 We

finally explore different ways to rerank the result set by optimizing ERR-IA directly,

and both a greedy algorithm and an optimal one are presented.

The rest of the paper is organized as follows. In Section 2, we review the related

work in result set diversification, draw the connection among different approaches, and

1 See http://plg.uwaterloo.ca/~trecweb/2010.html
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connect them with our proposed method. Section 3 introduces the intent-based rank-

ings, which are at the core of our diversification framework. Section 4 proposes the

ERR-IA metric and analyzes its properties as compared to other metrics. Section 5

explores a greedy algorithm and a non-greedy algorithm (i.e., Branch and Bound) to

directly optimize ERR-IA. Experiments results are provided in Section 6. Finally, as a

complement to the intent-based ranking framework for diversification, Section 7 pro-

poses an alternative framework for content based diversification that can be explored

in future work.

2 Related work

As mentioned in the introduction, MMR is a seminal work for results diversification

and it led to several follow-ups. Gollapudi and Sharma (2009) propose a set of natural

axioms for result diversification that aid in the choice of MMR-like objective functions;

Wang and Zhu (2009); Rafiei et al. (2010) use a portfolio approach to increase relevance

measured by return while decrease similarity measured by risk. Zhai et al. (2003) study

both novelty and relevancy in the language modeling framework. They propose an

evaluation framework for subtopic retrieval, based on the metrics of subtopic recall

and subtopic precision. They also propose a cost based approach to combine relevance

and novelty in the same spirit as MMR. All these works share the shortcoming of MMR

mentioned in the introduction, namely that the similarity function is query and intent

independent.

Chen and Karger (2006) use standard IR techniques to improve diversity for am-

biguous queries. In this work, documents are selected sequentially according to rele-

vance. The relevance is conditioned on documents having been already selected. Words

in previous documents are associated with a negative weight to improve novelty. Our

work differs in that it explicitly considers different query intents, so that the result set

covers multiple query intents.

Radlinski et al. (2008) directly learn a diverse ranking of results based on users’

clicking behavior through online exploration. They maximize the probability that a

relevant document is found in the top k positions of a ranking. Since users tend not to

click similar documents, online learning produces a diverse set of documents naturally.

This is very appealing approach, but it cannot readily be used for tail queries since it

requires user feedback.

We have already reviewed (Clarke et al., 2008) and (Agrawal et al., 2009) in the

introduction. The latter extends the former and we mainly differ from them by the

incorporation of specific intent based relevance functions. Both papers also felt the urge

to develop new metrics, as the literature on effective metrics that take into account

both diversity and relevance is thin. In this work, we are extending the metrics that

they have introduced and argue that ERR-IA is well suited for this purpose.

Finally, the recent works of Santos and colleagues (Santos et al., 2010a,b) as well

as Carterette and Chandar (2009) have an objective function for diversification similar

to the one of Agrawal et al. (2009) and ours. Two of the main differences are the query

intent distribution, that we estimate from click logs, and the intent based relevance

scores, that are generated using a learning to rank approach instead of language models

or other standard retrieval models. Also one of our main contribution is the link between

a well funded metric for diversity, ERR-IA, and the objective function to be optimized.
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In the aforementioned works, the evaluation metrics and the objective function were

not directly connected.

3 The Intent-Based Ranking Framework

In this study, we focus on shopping related queries. There is a clear business incentive

for a web search engine to improve this class of queries because they generate a lot of

revenues. We first describe the five intents that have been identified for this type of

queries.

3.1 Intents

The five intents that we consider for shopping queries are described as follows:

Buying Guide Intent is to retrieve a document that explains how to buy a particular

category of products. It might contain main features and considerations, important

terminology, where and how to purchase.

Reviews Intent is to retrieve documents for evaluations of products that could include

ratings, recommendations, and explanations of the author’s point of view of the

product.

Support Intent is to retrieve documents containing technical detail about a product

that helps a user in using the item. For example, manuals, trouble shooting pages,

tutorials and warranties.

Official Product Homepage Intent is to retrieve a document that describes the

specific product at the manufacturer’s domain.

Shopping Site/Purchase Intent is to retrieve documents from sites that give the

user an opportunity to purchase the product online.

Finally there is also a “general” intent defined as a catch all for all user needs.

These intents were selected to correspond with an idealization of the shopping pro-

cess. In this abstract view, the consumer first examines buying guides to understand

how to shop for a desired product, then consults reviews and goes to the official prod-

uct homepage. Finally the consumer makes their purchase at a shopping site, and uses

support pages for post-purchase information. In practice, these intents are not orthog-

onal; consumers can be in multiple stages and documents can satisfy multiple intents

at the same time.

In our experiments, however, these shopping intents are actually fairly separable

as illustrated by the graphs in figure 1. To create these plots, we scored the same set

of documents with each of our 5 intent-specific models; the intent-specific models were

trained to render a higher score for documents that are relevant to a given query and

a specified intent (described in more detail in section 3.3). For example, an Amazon

review page for a particular dvd player would get a higher score from the Reviews

model than from the Support model for the same query. Each graph in figure 1 is a

scatterplot comparing the scores from one intent-specific model with another; there is

one graph for each possible pair of our five intents. For example, in the bottom-most

plot, the scores of the Support model are plotted against the scores from the Homepage

model. From the mass of points that align roughly to the axes, we can see that many

documents receive high scores from only one of the two intent models. We take this as
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Fig. 1 Scatter plots of the intent based relevance scores on the set of documents used for the
experimental evaluation (see Section 6).

an indication that the intent-specific models can and do discriminate between intents in

these shopping-related documents. Some intents such as Homepage and Review show

almost orthogonal scores, while other intents show a lesser degree of differentiation,

such as Homepage and Purchase.

3.2 Intent Mining

The query intent classification method of Agrawal et al. (2009) is based on smoothing

class labels of a seed set over the bipartite graph of query-document click logs by ran-

dom walk. However, users most often click on a top level page in a site, and navigate

to a deeper page better revealing their true intent. In such cases, post-search browsing

activity becomes crucial for query intent determination. Our intent mining method

takes this into account by joining the data from toolbar and query logs. To better cap-

ture user’s web activity, we construct search trees where tree nodes represented user’s

search events (i.e., queries, clicks, and search result links presented to the user) and

tree edges denote the referral relationship between nodes. In our search log, we track

the causal (i.e., referral) relationship among search events. By using the referral infor-

mation between events, we can disambiguate interleaved search sessions conducted by

the same user (e.g., users who conduct multiple searches simultaneously using multiple

tabs/windows) and put them in different branches of the resulting trees. In the tree

construction process, we basically use the referral information to connect the search
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Intent Average prob.
Purchase 17.5%
Review 7.4%
Buying Guide 1.1%
Support 8.6%
Home Page 22.1%
General 43.2%

Table 1 Intent distribution averaged over a set of 406 queries.

events. The resulting trees not only respect the temporal relationship but also respect

causal relationship between user’s search events. Also, we do not merge web events

visiting the same url into a single node, therefore, there is no cycle in the constructed

tree. The resulting data structure becomes disjoint trees (i.e., forest) rather than a

graph. There are several advantages with this representation. First, all interleaving

query sessions (e.g., users with multiple search tabs/windows opened simultaneously)

are well separated. Second, the related clicks are grouped in the same branch of search

tree.

We used five page category classifiers (i.e., for the five shopping intents) trained

beforehand and to estimate the strength of a web page belonging to a specific category

(i.e., intent). For example, an iPad review page on amazon.com would receive high

scores on both review and shopping categories but low scores on other categories. The

classifiers used all the document ranking features available to our search engine. These

features include those features extracted from html structure of a page, page content,

linking structures of the page (i.e., inlinks and outlinks), and click/view data on the

page if available. There were about a thousand of features for those classifiers. We

collected our training examples editorially and improve our training set using active

learning technique. We then train our page category classifiers using those training

examples.

To determine the query intent for a given search tree, we first filter out those pages

whose dwell times are less than one second. This is because we believe that users could

not spend less than one second on pages that interest them. For the remaining pages

under the query search tree, we pull out their five category scores and then compute

the average scores weighted by their page dwell times across pages. Here, we give

higher weights to those page clicks with higher dwell times since page dwell time is a

good implicit indicator of its page utility (Claypool et al., 2001; Liu et al., 2010). The

resulting five aggregated scores give us the estimation of intent strength of the query.

We then give a binary label to each intent by comparing its score against a threshold

tuned using the editorially judged data set described in section 6. For the cases where

all five scores are below the thresholds, we say it has the “general” intent (i.e. catch-all

intent). As a result, each processed query is labeled with a binary vector of length 6

representing the five shopping intents together with the general intent. To compute the

intent distribution for a specific query, we simply mine one year of query logs, extract

all search trees containing that query, and compute the average of these binary vectors

across all search trees. We finally normalize the resulting six intent probabilities so that

they sum to 1.

The intent distribution, averaged over 406 queries that will be used in the evaluation

section, is shown in table 1.
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3.3 Intent-specific Ranking

We also improve the intent dependent relevance estimate of (Agrawal et al., 2009). In

that paper, it is somewhat naively assumed that the intent-dependent relevance of a

query-document pair can be approximated by intent-independent relevance weighted by

the intent likelihood of the document. In other words, P (rel|d, q, i) = P (rel|d, q)P (i|d),

where q, d, and i stand for query, document and intent, respectively. It is easy to see

the shortcoming of this approximation with an example. Take a document d answering

perfectly a rare intent i. Then P (rel|d, q, i) should be large, but P (rel|d, q) will be

small because P (i|q) is small (since the intent is rare). In our work, instead of the

approximation above, we develop a dedicated machine learned ranking model for each

intent that directly estimates P (rel|d, q, i).
These intent-specific functions are built using stochastic gradient boosted decisions

trees for regression. This is similar to (Zheng et al., 2008) except that we use a pointwise

loss instead of a pairwise one. For each intent, a small (∼6,000 queries) specialized

training set is built by obtaining intent-conditioned editorial judgments for sample

query-document pairs. For the general intent, a large (∼30,000 queries) training set is

used where the editorial judgments are not conditioned on intent. To provide robustness

to non-targeted intents in the intent-specific functions, the small intent-based training

sets are combined with the large general training set, and the performance is optimized

over a held-out set of intent-based judgments.

The judgments were provided by in-house professional editors trained to carefully

designed guidelines. For non-intent-specific relevance judgments, the editors are in-

structed to estimate, based on ad hoc research or their own experience, the most likely

user intentions for a given query and grade the relevance of documents based on their

holistic assessment. For intent-specific editorial judgments, the user intention is given;

the editors were instructed to imagine themselves in a particular stage of the shop-

ping process while judging a query and document pair, and to ignore the value of the

document for other stages.

4 Intent aware metrics

We review in this section several metrics which have been recently proposed to take

into account the diversification of search results and we also provide some theoretical

analysis of these metrics. But first, we need to introduce standard information retrieval

metrics.

4.1 Standard information retrieval metrics

We are given an ordered list of n documents and the relevance label for the k-th

document is rk. In the binary case, rk ∈ {0, 1}, but rk can belong to an ordinal set in

the case of graded relevance: rk ∈ {0, 1, 2, 3, 4} for instance.

4.1.1 Average Precision

Average precision (AP) is a commonly used metric for binary relevance judgments. It

is defined as the average of the precisions at the positions where there is a relevant
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document:
1

R

∑
k

rk
1

k

∑
j≤k

rj ,

where R =
∑
rk is the number of relevant documents. We assume R to be constant.

We refer below to this metric as AP instead of MAP (mean average precision) because

we consider a single query.

4.1.2 Discounted Cumulative Gain

The Discounted Cumulative Gain (DCG) score (Jarvelin and Kekalainen, 2002) is a

popular measure for multi-level relevance judgments. In its basic form it has a loga-

rithmic position discount: the benefit of seeing a relevant document at position k is

1/ log2(k+ 1). Following (Burges et al., 2005), it became usual to assign exponentially

high weight 2rk − 1 to highly rated documents. Thus the DCG is defined as:

n∑
k=1

R(rk)

log2(k + 1)
,

with

R(r) =
2r − 1

2rmax
, (1)

rmax being the highest relevance level. The normalization by 2rmax is inconsequential

in the definition of the DCG, but we introduce it because the same function R is used

in the definition of the following metric.

4.1.3 Cascade-based metrics

Cascade-based metrics have been introduced in (Chapelle et al., 2009) and are based

on the cascade user model first proposed in (Craswell et al., 2008) and described in

algorithm 1.

Algorithm 1 The cascade user model

Require: R1, . . . , R10 the relevance of the 10 documents on the result page.
1: i = 1
2: User examines position i.
3: if random(0,1) ≤ Ri then
4: User is satisfied with the i-th document and stops.
5: else
6: i← i+ 1; go to 2
7: end if

The idea of a cascade-based metric is to use the relevance labels to estimate the

probability that the user will be satisfied2 by the document in position i. In particular,

it has been suggested in (Chapelle et al., 2009) to estimate Ri as R(ri).

2 We refer, in the rest of the paper, to this probability as a satisfaction probability because
of the underlying cascade user model. It can also be understood as a relevance probability.
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Given a decreasing utility function ϕ, the metric is defined as the expectation of

ϕ(k), where k is the position where the user finds the document that satisfies him. This

quantity turns out to be:

∑
k

ϕ(k)R(rk)

k−1∏
j=1

(1−R(rj)). (2)

The Expected Reciprocal Rank (ERR) metric (Chapelle et al., 2009) is an instanti-

ation of (2) with ϕ(k) = 1/k.

4.2 Intent aware metrics

In the case of multiple intents, let rik be the relevance label of the k-th document with

respect to the i-th intent. Also let pi be the probability that a user would be interested

in the i-th intent for that query.

Given an information retrieval metric, it has been suggested in (Agrawal et al.,

2009) to define its intent aware version as the expectation of the metric over the

intents. For instance, DCG-IA is defined as:∑
i

pi
∑
j

R(rij)

log2(j + 1)
. (3)

Similarly, ERR-IA is defined in (Chapelle et al., 2009) as the expectation of ERR

over the different intents.

Another metric of interest for diversity has been proposed in (Clarke et al., 2008)

and is named α-NDCG. It is defined for binary relevance and depends on a parameter

α ∈ [0, 1]. For simplicity, we define here the unnormalized version, α-DCG:

∑
k

1

log2(k + 1)

∑
i

rik(1− α)si,k−1 with si,k−1 :=

k−1∑
j=1

rij . (4)

α-DCG can be rewritten as:∑
i

∑
k

1

log2(k + 1)
rik

k−1∏
j=1

(1− α)r
i
j =

1

α

∑
i

∑
k

ϕ(k)R(rik)

k−1∏
j=1

(1−R(rij)), (5)

with ϕ(k) = 1/ log2(k + 1) and R(r) = αr.

Note that there is a semantic difference between the intents of an ambiguous query

(Agrawal et al., 2009) and the information nuggets for an underspecified query (Clarke

et al., 2008). In fact, each intent of a query can have several relevant nuggets and metrics

for diversity should thus have a double summation over both intents and nuggets as

noted by Clarke et al. (2009). Equations (3) and (5) can formally handle that scenario

by letting the index i goes over (intent, nugget) pairs. In the rest of this paper, an

intent should thus be understood as an (intent, nugget) pair.

The expression of α-DCG as equation (5) leads us to our first result:

Proposition 1 The α-DCG metric (Clarke et al., 2008) is, up to a constant, an in-

stantiation of an intent aware cascade based metric (CBM-IA) (see equation 2) in which

all the intents are supposed to be of equal importance.
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In fact, the authors of (Clarke et al., 2008) made the simplifying assumption that

all intents are equally probable (with a probability γ in their paper), but it is not too

difficult to generalize their derivation to the case where each intent has a probability

pi. The resulting metric would be the same as in (5) but with a pi inside the sum.

4.3 Properties of intent-aware metrics

We argue in this section that DCG-IA and AP-IA are not well suited metrics for

diversity because they do not particularly reward rankings covering various intents.

On the contrary, CBM-IA does. Key to this analysis is the notion of submodularity

that we review below.

In this section, we view an information retrieval metric as a function of the relevance

of the documents. For instance, if we have n documents, we can write AP as a function

defined on {0, 1}n: f(x1, . . . , xn).

4.3.1 Submodularity

This is a very short introduction to submodular functions. More details can be found

in (Simchi-Levi et al., 2005, Chapter 2).

Definition 1 A function f is submodular if for any two elements x and y for which f

is defined, we have:

f(x) + f(y) ≥ f(x ∨ y) + f(x ∧ y), (6)

where x ∨ y (resp. x ∧ y) denotes the componentwise maximum (resp. minimum) of x

and y.

If −f is submodular, f is said to be supermodular. If f is both supermodular and

submodular, it is said to be modular. The following proposition gives two properties of

submodular functions.

Proposition 2 When f is twice differentiable, the following 3 assertions are equiva-

lent:

1. f is submodular

2. ∀i 6= j, define ψij(t, u) := f(x1, . . . , xi−1, t, xi+1, . . . , xj−1, u, xj+1, . . . ). Then

∀a < b, t→ ψij(t, a)− ψij(t, b) is a non-decreasing function.

3. ∀i 6= j, ∂2f
∂xi∂xj

≤ 0.

4.3.2 Submodularity for IR metrics

Let us illustrate submodularity in the context of metrics. Let f be a submodular metric,

r a vector of binary relevance labels, i and j two rank positions and let us define rab

the relevance vector r where ri is replaced by a and rj by b.

Let us apply the definition of a submodular function with x = r01 and y = r10:

f(r01) + f(r10) ≥ f(r11) + f(r00).

This can be rewritten as:

f(r10)− f(r00) ≥ f(r11)− f(r01).
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It means that the added value in switching the relevance of the i-th document from

non-relevant to relevant is smaller when the j-th document is relevant than when it is

not. This is a diminishing return property which seems highly desirable for most IR

tasks: if we have already shown a lot of relevant documents, there should be less added

value in showing more relevant documents.

Proposition 3 The metrics described in section 4.1 have the following properties:

CBM is a submodular; DCG is modular; and AP is supermodular.

The proof is in the appendix and relies on the 3rd assertion of proposition 2. Note

that the properties of proposition 3 extend to the intent-aware versions of the metric

since a positive linear combination of submodular (resp. supermodular) functions is

also submodular (resp. supermodular).

4.3.3 Consequences for intent aware metrics

The submodularity of CBM implies that CBM-IA (of which ERR-IA and α-DCG are

instantiations) will favor rankings covering diverse intents. Indeed, once several relevant

documents have already been selected for an intent, there is little gain in adding more

relevant documents from that topic (diminishing return property). It is then more

beneficial to add more relevant documents from another topic.

On the other hand, there is no diminishing return property for DCG. In fact it

is easy to see that, by swapping the order of the summations in (3), the optimal

ranking under DCG-IA is simply obtained by sorting the documents according to their

expected gain,
∑
piR(rij). As a result, the choice of a document in a position p does

not influence the choice of another document in position q > p. This is not desirable

from a diversity point of view. A comparison between DCG-IA and ERR-IA on two

rankings is illustrated in table 2.

AP-IA is, in some sense, even worse than DCG-IA because AP is supermodular.

This metric will favor rankings where all the relevant documents come from the same

intent. The proposition below is a proof of this fact in a special case.

Proposition 4 Assume that we want to retrieve n documents and that each document

is relevant to at most one intent. Then, if there are at least n relevant documents for the

most likely intent, the optimal ranking under AP-IA is obtained by selecting n relevant

documents from that intent.

4.4 Correlation with click logs

After this theoretical analysis, we now turn to an empirical validation to check whether

ERR-IA can indeed better predict user behavior – as observed in click logs – than DCG-

IA. For this purpose, we follow the same experimental protocol as the one outlined in

(Chapelle et al., 2009). As discussed later in section 6, we have a set of 406 queries and

about 50 documents per query. Each triplet (query, document, intent) has been edito-

rially judged on a 5-point relevance scale. The intents and the method for estimating

the intent distributions have been described in section 3.

The sessions corresponding to these 406 queries have been extracted from the clicks

logs of Yahoo! search over a 5-month period. We only kept the sessions for which the
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Table 2 Synthetic example with 9 documents and 3 intents. The labels are either Excellent
(tick) or Bad. The first rank list is not diverse (only covering intent A) but is preferred by
DCG-IA, while the second list returns one relevant document per intent and is preferred by
ERR-IA.

Intent A B C
Prob. 0.4 0.3 0.3
d1 X
d2 X
d3 X
d4 X
d5 X
d6 X
d7 X
d8 X
d9 X

List 1 List 2

d1 d1
d2 d4
d3 d7

5.97 5.17 DCG-IA
0.243 0.284 ERR-IA

Table 3 Correlation on 406 queries of ERR-IA and DCG-IA with the opposite of abandonment
rate.

ERR-IA DCG-IA
0.326 0.276

top 5 documents were editorially judged and only considered the clicks on one of the

top 5 documents. The reason for not considering the top 10 positions is because the

intersection between clicks logs and editorial judgments would be much smaller. As in

(Chapelle et al., 2009), we call a configuration a given query and list of 5 documents.

Because of variations in the search engine, a query may have several different configu-

rations. In fact the total number of configurations for these 406 queries is 9930. Each

configuration has an average of 54 sessions. For each configuration, we compute two

intent aware metrics, DCG-IA and ERR-IA, as well as UCTR which is the proportion

of sessions for which there is at least one click. The reason we consider UCTR is that

it is the opposite of the abandonment rate, which is a typical quantity of interest when

optimizing for diversity (Clarke et al., 2008; Sarma et al., 2008; Agrawal et al., 2009).

The correlations are shown in table 3. The difference between ERR-IA and DCG-IA is

statistically significant according to a bootstrap test (p-value = 2× 10−7).

5 Algorithms for diversity

5.1 Objective function

As explained in the previous section, ERR-IA is defined as:∑
i

pi
∑
k

sik
k

∏
j<k

(1− sij), (7)

with sik := R(rik) and rik the relevance label of the k-th document with respect to the

i-th intent. This is the expected reciprocal rank at which the user will stop its search

under the cascade model, where the expectation is taken over the intents and the users.

But instead of using (7) for evaluation, it can be optimized to retrieve a set of

diverse and relevant results. The relevance judgments are of course not available for
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most queries, so the sik are to be estimated from the intent based relevance functions

presented in section 3.

The objective function (7) is related to the one used in (Agrawal et al., 2009).

Indeed, if the 1/k decay factor is ignored, the expected reciprocal rank turns out to be

the probability of a clicking on any result, that is 1 - the probability of abandonment.

Mathematically, this can be seen with:

∑
i

pi
∑
k

sik
∏
j<k

(1− sij) =
∑
i

pi

[
1−

∏
k

(1− sik)

]
. (8)

The right hand side of this equation is indeed the quantity that is optimized in (Agrawal

et al., 2009). But note that it is independent of the order to the documents; it only

depends on the set of documents. On the other hand, the objective function (7) is

better suited for ranking purposes as its value depends on the order of the documents.

5.2 Greedy optimization

The objective function (8) has been proved to be submodular.3 This implies that a

greedy algorithm for optimizing it is not too far from the optimal solution. Submod-

ularity is defined in terms of sets and that is indeed how the objective function of

(Agrawal et al., 2009) is defined. The situation is a bit more complex in our case be-

cause our objective function is not defined on sets, but on ordered lists. However by

considering an ordered list as a set of pairs (document, rank), we can also prove that

the objective function (7) is submodular. We are not including here a proof because it is

out of the scope of this paper. The bottom line is that the submodularity implies a the-

oretical guarantee about the greedy algorithm presented below: the objective function

value that it will reach will never be less than half of the optimal one.

The greedy optimization algorithm turns out to be the same as the ia-select

algorithm of (Agrawal et al., 2009) and is described in algorithm 2.

Algorithm 2 Greedy optimization of (7)

Require: sik, probabilities of satisfaction for all intents i and all the documents k.
pi probability of intent i.

R = ∅ Documents selected in the rank list
for j=1,. . . ,10 do Loop over the positions
k∗ ← arg maxk 6∈R

∑
i pisik Greedy selection

R← R ∪ k∗
pi ← pi(1− sik∗ ) Posterior probabilities

end for

5.3 Branch-and-bound for exact optimization

As already discussed in (Agrawal et al., 2009), optimizing (7) is NP hard. Even though

one can use submodularity to prove theoretical guarantee of the greedy algorithm 2, a

3 The notion of submodularity here is slightly different than the one presented in section
4.3.1: this one is defined on sets.
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natural question arises: how far, in practice, is this greedy solution from the optimal

one?

To answer this question, we devised a branch-and-bound algorithm to find the

global optimal solution of (7). Branch and bound algorithms are methods for global

optimization in combinatorial problems (Papadimitriou and Steiglitz, 1998). It gener-

ally involves the following two steps:

Branching This consists in growing a tree in which each leaf corresponds to a possible

solution and an inner node represents a set of solutions. In our case, the tree has

depthN+1 (N is the number of documents) and a node at the j-th level corresponds

to an assignment from positions to 1 to j.

Bounding This is a procedure that computes upper and lower bounds for the value

of the objective function within a given subset.

The key idea of a branch-and-bound algorithm is: if the upper bound for some

tree node (set of candidates) A is lower than the lower bound for some other node

B, then A may be safely discarded from the search. This step is called pruning and

reduces the number of possible branches. We made the following design choices in our

implementation:

– We use a depth first search algorithm and the children of a node are explored

according to the greedy heuristic of algorithm 2. In particular, this means that the

first leaf to to be reached corresponds to the solution of the greedy algorithm.

– The lower bound is the best objective function value so far and the upper bound

is explained below.

The maximum of the objective function (7) over a set of permutations π ∈ P can

be upper bounded as:

max
π∈P

∑
i

pi
∑
k

si,π(k)

k

∏
j<k

(1− si,π(j)) ≤
∑
i

pi max
π∈P

∑
k

si,π(k)

k

∏
j<k

(1− si,π(j)), (9)

where π(k) corresponds to the index of the k-th document in the ranking induced by π.

For a given node in the tree, the first documents in the ranking are already chosen, so

we use the above upper bound where the set of permutations P is restricted to those

correctly placing these documents. An intuitive explanation of this upper bound is

the following: for a given intent, maximizing ERR is straightforward because this only

involves sorting according to the scores sik; the upper bound is simply the weighted

average of these maximum ERR values.

Evaluation of the greedy algorithm In order to quantify the sub-optimality (if any) of

the greedy algorithm 2, we took a set of 50 queries from the dataset to be described in

section 6 and diversified the search results using the greedy algorithm and the branch-

and-bound algorithm.

The differences in objective function values obtained by these algorithms are re-

ported in table 4. The greedy algorithm finds the optimal solution for most queries

and when it does not find it, the gap is very small. This is very reassuring since the

branch-and-bound algorithm is too slow in practice; instead, the near-optimal greedy

algorithm can safely be used (at least on this dataset).
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Table 4 Relative difference, over 50 queries, in the objective function value (7) between the
solution found by the greedy algorithm 2 and the optimal one found by the branch-and-bound
algorithm.

Relative difference Number of queries
None 39
10−5 to 10−4 6
10−4 to 10−3 5

5.4 Learning the transfer function

A very important component of our algorithm is a reliable estimation of sik, the sat-

isfaction probability of the k-th document for the i-th intent. This crucial aspect has

not been addressed in (Agrawal et al., 2009). As explained in section 3, we have at our

disposal a scoring function for each intent and we can thus get a relevance score tik
for each document and each intent. Since these scoring functions have been trained by

regression with targets between 0 and 10, a first heuristic which comes in mind is to

rescale these scores between 0 and 1:

sik :=
tik
10
. (10)

But as will see in the next section, this heuristic yields only a small improvement.

Instead we propose to learn a transfer function φi such that:

sik := φi(tik) (11)

For this purpose, we used, for each intent, an independent set of editorial judgments

and computed for each document its score t according to the intent based relevance

function as well as its satisfaction probability, as estimated with R(r), r being the

editorial judgment and R the function defined in (1). These input-outputs pairs are

then fed to an isotonic regression algorithm (Barlow et al., 1972) which produces a

non-parametric function minimizing the mean squared error under a monotonicity

constraint. The reason for having this constraint is that we expect the probability of

satisfaction to be an increasing function of the relevance score.

The learned transfer functions φi are plotted in figure 2.

6 Evaluation

In this section, we first evaluate the intent mining method described in Section 3.2,

then the quality of intent based relevance functions of Section 3.3 and we finally assess

the diversification performance of algorithm 2.

6.1 Intent mining

To evaluate our intent mining method, we randomly sampled 2,492 user sessions from

the logs of Yahoo! search from December, 2008 to March, 2009. There are 3,658 queries

and 18,296 documents in this data set. For each user session, a professional editor

examined the user activity in that session and judged the user intents. There were
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Fig. 2 The transfer functions φi (11) learned with isotonic regression.

Table 5 Precision and recall of each query intent classifier.

Intent Precision Recall
Homepage 84.1% 52.6%
Reviews 78.7% 32%
Purchase 71.7% 29%
Support 44% 10.6%
Buying Guide 0.8% 25%

about thirty editors involved in the intent judgment process. We minimized the inter-

editor disagreements by having pilot judgment runs, workshops, and clear editorial

guidelines. Editors were instructed to examine the whole search session that includes

user’s queries, clicks, and seen search result links before they made any intent judgment.

As explained in Section 3.2, part of this dataset (70%) has been used for our per-intent

score threshold determination. The remaining 30% of the queries were used as a test set

for our query intent classifier. Table 5 shows the precision and recall of our query intent

classifiers. For homepage, review, shopping, we have good classification performance.

However, for support and buying guide intent, their classifier performances are not

satisfactory. This is because the support intent itself covers wide variety of sub-intents

such as “product recall”, “product manual”, “product warranty”, “product repair”,

“tutorial” etc. The support intent classifier could not cover all those sub-intents. Even

though the support classifier does not have high accuracy, the intent-specific ranking

function still improve relevancy drastically as shown in the next section. For buying

guide intent, it has low performance due to data scarcity. Only very few users had

buying guide intents and issued a query for that. Furthermore, many product categories

do not have any good buying guide pages available over the web except a few popular

product categories. Even though the user would submit a query for a buying guide,

there is little chance the search engine would find a good page for that.

We also asked the editors the relevance of each clicked page with respect to the

determined intent. The goal was to evaluate wether post-search clicks – mined from the

toolbar logs – are more informative or not than the clicks from the search page. Among

the sessions for which there was at least one click relevant to the determined intent,
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Table 6 Relevance gain of the intent-specific ranking functions over the general purpose
ranking function.

Intent DCG5 gain
Homepage 15.5%
Reviews 126.5%
Purchase 37.0%
Support 104.2%
Buying Guide 22.6%

49.8% had a post-search relevant click, 34% had a relevant click on the search page and

16.2% had both. This confirms that post-search clicks are very helpful in determining

the user’s intent.

6.2 Intent-specific ranking

We also evaluated the performance of the intent-specifc learned ranking functions

by comparing them to a general purpose ranking function that does not use intent-

conditioned training labels. As explained in section 3.3, these functions are trained

using Gradient Boosted Decision Trees (GBDT) (Friedman, 2001) on a set of thou-

sands of editorially labeled (query,urls) pairs. The relevance labels are on a 5 point

scale, ranging from Bad to Perfect. For the comparison of each these functions, we

used a held-out portion of its intent-conditioned training set. Table 6 shows the rel-

evance gain ranges from 15.5% to 126.5%. It is also interesting to observe that for a

relatively rare intent category such as Support, the large relevance difference indicates

that the general purpose ranking function fails to return good documents for that in-

tent (i.e. it strongly underestimates the relevance of these documents). This is exactly

why the approximation in (Agrawal et al., 2009) that we mentioned in Section 3 is

poor. Another interesting observation is that, our method can also underestimate the

relevance of good documents when there are too few examples to learn from, as in the

case of Buying Guide category.

6.3 Diversification

To assess the effectiveness of our ia-div (Intent aware diversification) algorithm, we

randomly selected 406 shopping related queries. For each query, the 6 intent based

ranking functions are used to obtain the top 10 results retrieved from the index of

Yahoo! search; after aggregating, each query has about 50 unique documents. Then

each triplet (query, document, intent) was editorially judged on a 5 points relevance

scale.

The baseline “undiversified” ranking list is obtained by sorting the documents ac-

cording to the standard relevance function; and the diversified ranking list is computed

via the greedy algorithm 2 that we call ia-div. The corresponding ERR-IA of each

ranking list is computed using the editorial judgments. The same query intent distri-

bution is used for optimization and evaluation. We have tried two different transfer

functions: the “linear” one (10) and the “monotonic” one (11) learned with isotonic re-

gression. Table 7 reports the performance of different methods. The difference between
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Table 7 Values of the ERR-IA editorial metric for different reranking strategies. The two
versions of IA-DIV differ by the choice of the transfer function. The scores have been normalized
such that the ideal ranking has a score of 1.

Normalized ERR-IA Improvement
Undiversified 0.8179 –
ia-div-linear 0.8238 0.7%
ia-div-monotonic 0.8325 1.8%
MMR 0.8005 -2.1%

ia-div-monotonic and the undiversified baseline is statistically significant: the p-value

of a paired t-test is 0.013 and the one of Wilcoxon test is 1.4× 10−4. Even though the

DCG gains in table 6 of the intent-specific ranking functions are very large, the gain of

the rankings produced by ia-div is not as large. This could be due to the fact that for

a lot of queries, the probability of the “general” intent has been estimated to be more

than 50% and the ranking produced by our algorithm for these queries is then similar

to the original ranking.

Finally we also compared to the MMR algorithm (Carbonell and Goldstein, 1998)

where the similarity measure is the cosine similarity in the vector space model. It

resulted in a drop in performance which can be explained by the fact that this similarity

measure is query and intent independent.

7 Future work

The diversification scheme proposed in this paper is powerful, but is limited to only

a certain class of queries because it requires to explicitly model the relevance of a

document with respect to a given intent. As future work, we propose an extension of

the proposed algorithms which can be used to diversify the result set of any query and

does not require intent relevance modeling.

In this proposal, diversification arises from document content analysis which can be

done through the machine learned aboutness (MLA) algorithm introduced in (Paranjpe,

2009). This algorithm extracts from a document the terms which are supposed to be

salient. In addition each term is given a score of how “important” it is in the document.

More precisely, this score is an estimate of the click probability on the document for a

user issuing a query containing that term. This score can thus be thought as a relevance

probability conditioned on that term.

We now propose to consider each of these terms as an intent and apply the same

diversification algorithm as above. More precisely, we maximize the objective function

(7), where sik is the score given by the MLA algorithm to the i-th term for the k-th

document. Instead of considering the set of all possible terms, we can restrict ourselves

to the ones that appear at least once in a short list of documents to be reranked.

Let pi the probability that the user is interested in the i-th term. A crucial step is

to infer these probabilities. Indeed, remember that the terms and scores are extracted

in a query independent manner; so we now need to know, given a query, how likely is a

user to be interested in a given term. For this purpose, we can make use of an estimate

of the marginal relevance.
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The marginal probability that a user is satisfied by the k-th document is:

P (Sk = 1|q) =
∑
i

P (Sk = 1|i, q)P (i|q) =
∑
i

sikpi. (12)

The left hand side of equation (12) can either be estimated with standard relevance

judgments if they are available – for instance like in ERR, P (sk = 1|q) = R(rk), if

document k has relevance label rk; or through a relevance score φ(tk) like in section

5.4.

We thus have a system of linear equations (12) where the unknown are pi. Once

these pi are found, we can use the same diversification algorithm as in section 5.

8 Conclusion

We have explored in this paper the diversification of search results based on intent

modeling. This work can be seen as a follow-up of (Agrawal et al., 2009) with the

following contributions. First, we studied metrics for diversity and showed that a di-

minishing return property is needed in order to favor the coverage of various intents.

Second, by comparison with a branch-and-bound algorithm that we devised, we showed

that, on our dataset, the greedy algorithm for diversification is near optimal. Third,

we explicitly modeled the intent relevance scores by training dedicated intent-specific

ranking functions. And finally, we proposed a method to map the relevance scores to

probabilities of satisfaction.

Empirically we have first shown that ERR-IA correlates better with user satisfac-

tion – as measured by abandonment rate – than DCG-IA. Then we showed that our

framework for diversification leads to better results in terms of ERR-IA. Future work,

as explained in the previous section, includes extension of the proposed algorithm to

the case where intent based relevant judgments are not explicitly available.
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Appendix

Proof (of proposition 3)

We will use the 3rd property of proposition 2. For AP,

fAP (x1, . . . , xn) =
1

R

∑
k

xk
1

k

∑
j≤k

xj

and ∂2fAP

∂xi∂xj
> 0, ∀i 6= j. Note that we use here the assumption that R is constant.

For DCG, we have:

fDCG(x1, . . . , xn) =

n∑
j=1

R(xj)

log2(j + 1)

and ∂2fDCG

∂xi∂xj
= 0.

For CBM, the proof is a bit more involved, but it is clear intuitively that CBM

has a diminishing return property: if a relevant document is placed in position i, the

probability of examination in positions j > i will be low and the added value of placing

another relevant document in position j is lower than if the the document in position

i were not relevant.

We first need the following lemma:

Lemma 1 ∀xi ∈ [0, 1], ∀k ≤ n, we have:

n∑
i=k

xi

i−1∏
j=k

(1− xj) ≤ 1.
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The lemma can easily be proved by induction: it is true for k = n and if it true for a

given k, then it also true for k − 1:

n∑
i=k−1

xi

i−1∏
j=k−1

(1− xj)

= xk−1 + (1− xk−1)

n∑
i=k

xi

i−1∏
j=k

(1− xj)

≤ xk−1 + (1− xk−1) = 1.

We have fCBM (x1, . . . , xn) =
∑
k ϕ(k)xk

∏k−1
j=1 (1 − xj). We ignore for simplicity

the function R: since it is a monotonic function, it will not affect the sign of the second

derivatives. Let us fix two ranks p < q:

∂fCBM
∂xp∂xq

= −ϕ(q)

q−1∏
i=p+1

(1− xi) +

n∑
j=q+1

ϕ(j)xj

j−1∏
i=p+1, i 6=q

(1− xi).

=

q−1∏
i=p+1

(1− xi)

−ϕ(q) +

n∑
j=q+1

ϕ(j)xj

j−1∏
i=q+1

(1− xi)


≤

q−1∏
i=p+1

(1− xi)ϕ(q)

−1 +

n∑
j=q+1

xj

j−1∏
i=q+1

(1− xi)


≤ 0.

The first inequality hold because ϕ is decreasing while the second comes from applying

the lemma with k = q + 1.

Proof (of proposition 4)

Let us assume, without any loss of generality, that the first topic is the most likely

one. Then, let us consider the ranking consisting of n relevant documents for that

topic. The value for AP will be 1 for that topic and 0 for the other topics (because

we assumed that a document is relevant to at most one topic). And thus the value of

AP-IA is p1. We will now show that the value of any other ranking is less or equal to

p1.

Let rij be the relevance values for an arbitrary ranking and let ri denote the vector

(ri1, . . . , r
i
n). Because fAP is supermodular, we can apply several times the reverse

inequality from the definition (6) and get:

∑
i

fAP (ri) ≤ f

(
n∨
i=1

ri

)
+

n∑
j=2

f

((
j−1∨
i=1

ri

)∧
rj

)
.

Because of the assumption that a document is at most relevant to one topic, all the

terms containing a ∧ in the above equation are 0. And we finally obtain:

∑
pifAP (ri) ≤ p1

∑
i

fAP (ri) ≤ p1f

(
n∨
i=1

ri

)
≤ p1.


