
Multi-Class Feature Selection
with Support Vector Machines

Olivier Chapelle∗ S. Sathiya Keerthi†

Abstract

We consider feature selection in a multi-class setting
where the goal is to find a small set of features for all the
classes simultaneously. We develop an embedded method
for this problem using the idea of scaling factors. Training
involves the solution of a convex program for which we
give a scalable algorithm. The method is closely related
to extensions of L1 regularization and recursive feature
elimination. These methods are shown to be very effec-
tive in text classification.

Key Words: Group Lasso, L1/L2 regularization, Sup-
port Vector Machines, Feature selection, Text classifica-
tion, Scaling factors

1. Introduction

Feature selection is an important component of several
machine learning applications, e.g. text classification,
bioinformatics. It is used to help reduce the load on com-
putational resources and, in cases where there are many
noisy features, to help in lifting the performance by elim-
inating such features.

Guyon and Elisseeff [11] classify feature selection meth-
ods into three types: Filter, Wrapper and Embedded
methods. Filter methods select features as a pre-
processing step; they are cheap, but are not very effective.
Wrapper methods use the prediction method as a black
box to score subsets of features; they are good, but very
expensive. Embedded methods [17], which belong to a
middle ground perform feature selection as part of the
training process of the prediction method. Linear clas-
sifiers that use L1 regularization on the weights [9, 20]
and Recursive Feature Elimination (RFE) [12], a back-
ward elimination method that uses smallness of weights
to decide feature removal, fall in this class.

Most feature selection methods suggested in the lit-
erature are for binary classification. Many classification
problems occurring in practice involve many categories.
They are either of a multi-class type (assigning exactly
one class to each example) or of a multi-labeled type (as-
signing a variable number of classes to each example). In
such multi-class and multi-labeled settings1 it is natural
to look for a small common set of features that works
well for all the classes. We will refer to this problem as

∗Yahoo! Research, Santa Clara CA, chap@yahoo-inc.com
†Yahoo! Research, Santa Clara CA, selvarak@yahoo-inc.com
1In the rest of the paper we will simply refer to both these types

of problems as multi-class problems.

simultaneous multi-class feature selection. The need for
selecting a small common set of features is also motivated
by external constraints. For instance, in text classifica-
tion, when the average number of features occurring in
a document is large it is time consuming to process an
individual set of different features for each class. Another
example would be the design of a medical diagnosis tool
where each feature corresponds to a measurement and is
thus expensive to acquire.

It is easy to extend binary filter methods for doing
simultaneous multi-class feature subset selection [8, 26].
For example, one can take the information gain values
of the individual one-versus-others binary classifiers and
combine them (say, via an averaging or max operation)
to form a single measure, using which the various fea-
tures can be ordered. The extension of embedded meth-
ods is much less trivial. In this paper we consider the
regularized linear classification setting (with SVMs being
the particular model taken for implementation) and de-
velop a new embedded method based on scaling factors
that addresses the simultaneous feature selection prob-
lem. The training process involves a convex program for
which we develop a scalable algorithm that works effi-
ciently in a forward selection path tracking mode. This
method is closely related to suitable adaptations of L1

regularization and RFE to deal with simultaneous fea-
ture subset selection. In the statistics literature, such
L1 regularization models are also known as Group Lasso
[27, 23]. We evaluate these new embedded methods on a
number of text classification problems and demonstrate
that they are quite superior to a baseline filter method
that uses information gain. In parallel works Obozinsky
et al [24] and Argyriou et al [1] have developed a simi-
lar model for L1 regularization. They apply the model
to multi-task learning and use a block coordinate-wise
optimization technique for training.

2. Framework

In this section we present our main ideas for multi-class
feature selection. Before doing this we first review Sup-
port Vector Machines and two related embedded methods
for feature selection, viz. RFE and L1-SVMs.

2.1 Support Vector Machines

Let us first introduce some notations. In the following,
the index i will always run over the training examples
1 . . . n, j over the features 1 . . . d, and k over the classes
1 . . . c. A training set {(xi,yi)}1≤i≤n is given, where xi ≡

(xi1 . . . xid)> is the d dimensional vector representation
of the i-th example and yi ≡ (yi1 . . . yic)> its label vector.
yik = 1 if that example belongs to the k-th category and
−1 otherwise. The linear classifier for the k-th class uses
a d dimensional weight vector, wk. The j-th element of
wk will be written as wjk. We will use w2

k to denote the
square of the Euclidean norm of wk.

Consider the design of wk, the weight vector for class
k. Support Vector Machines [3] minimize the following
objective function2

1
2
w2
k +

C

2

n∑
i=1

`(yik(wk · xi)). (1)

The loss function ` is `(t) = max(0, 1−t)p. We take p = 2
in the rest of this paper. SVMs are often used to find
non-linear decision boundaries through a kernel function,
but in this paper we do not employ it. Linear SVMs are
effective in many applications such as text classification
and bioinformatics [15]. Note that in the linear case, fast
methods exist to train SVMs [16]. For instance in that
paper, a training time of 10 minutes has been reported
for a training set of one million documents.

2.2 Recursive Feature Elimination

One of the standard embedded methods for doing fea-
ture selection with SVMs is Recursive Feature Elimina-
tion (RFE) [12]. It was originally suggested for binary
classification. So to begin with let us describe RFE just
for one binary classifier, say for the k-th class with weight
vector wk. RFE is based on the idea that the importance
of a feature j should be related to the magnitude of its
weight |wjk|. Combining this idea with a backward elim-
ination gives the following algorithm:

1. Train SVM on the active features.

2. Remove the feature with the smallest |wjk|.

3. Go back to step 1 or stop if there are only m features
left.

Of course removing one feature at a time in step 2 is
time consuming and in practice it is common to remove
as much as half of the active features in each iteration.
This algorithm is very simple to implement. Also it can
be made more efficient by using seeding, i.e. when re-
training the SVM in step 1, use the weight vector from
the previous step as a starting point.

One can think of extending RFE to the multi-class si-
multaneous feature subset selection problem in various
ways. For step 2 of RFE, Chen et al [5] propose using
the smallness of maxk |wjk| as the criterion. One could
instead use the smallness of

∑
k w

2
jk. As we will see in

section 2.6 below, this measure has good theoretical sup-
port.

2A threshold is not included, but can easily be learned by adding
a constant component 1 to the examples.

2.3 L1 Support Vector Machines

Another way of obtaining a sparse solution (i.e. with
a few non-zero weight components) is to change the L2

norm regularizer in (1) by an L1 norm,
∑
j |wjk|. We refer

to this model as L1-Support Vector Machines (L1-SVM).3

The use of the L1 norm tends to give sparse solution. For
binary classification this approach has been pioneered by
Mangasarian and his colleagues (see for instance [21]).
One difficulty with L1-SVM is that one cannot use stan-
dard unconstrained optimization techniques to solve this
problem (because of the non differentiability). One can
resort to LP solvers [2]. See also [28] for a path track-
ing method and [9] for a coordinate-wise optimization
method.

It is not obvious how the L1-SVM model can be ex-
tended to deal with the simultaneous feature subset selec-
tion problem in multi-class settings. Note that replacing
the L2 norm regularizer in (1) by an L1 norm for each
k separately will only lead to the selection of an inde-
pendent set of different features for that class. Below, in
section 2.5 we derive a new L1-SVM model that addresses
the simultaneous feature subset selection problem.

2.4 Feature selection via scaling factors

We now come back to the multi-class case and introduce
the framework of scaling factors for doing feature selec-
tion.

The goal is to learn c classifications functions fk(x) =
wk ·x, 1 ≤ k ≤ c and to do simultaneous feature selection,
i.e. find a small set of features which are good for all the
classifiers. Suppose we want to find m features. A natural
optimization problem to solve is (see also [17, 10]):

min
1
2

c∑
k=1

w2
k +

C

2

n∑
i=1

`(yik
d∑
j=1

√
σjwjkxij) (2)

subject to the constraints σj ∈ {0, 1},
∑

σj = m.

The reason for using the square root in (2) will become
clear later, but for now it does not change anything since
σj ∈ {0, 1}. Minimizing this objective function would
indeed select m features (those corresponding to σj = 1)
and effectively discard the others.

The problem with (2) is that this optimization problem
is combinatorial and thus difficult to solve. But we can
relax the constraint σj ∈ {0, 1} by σj ≥ 0. Also, by
making the change of variables wjk ← wjk

√
σj , we can

then rewrite the relaxed version of (2) as

min
1
2

c∑
k=1

 d∑
j=1

w2
jk

σj
+ C

n∑
i=1

`(yik(wk · xi))


subject to the constraints σj ≥ 0,

∑
σj = m.

3In “L1-SVM”, L1 refers to the norm of the regularizer. In
the literature the same acronym has also been used in a different
context to refer to the norm of the training errors.

(In the above, the choice σj = 0 will correspond to wjk =
0 ∀k and feature j being eliminated.) This is a convex
problem because the function (x, y) 7→ x2/y is jointly
convex for y > 0.

Instead of having the constraint
∑
σj = m, we can

introduce a Lagrange multiplier and add λ
2

∑
σj in the

objective function and get:

min
1
2

c∑
k=1

 d∑
j=1

w2
jk

σj
+ λ

∑
σj + C

n∑
i=1

`(yik(wk · xi))


subject to the constraints σj ≥ 0.

Note that the two problems given above are equivalent:
for every m, there exists a λ such that the solutions are
identical (and vice versa). Dividing this objective func-
tion by

√
λ, making the change of variable σj ←

√
λσj

and introducing C̃ = C/
√
λ, we obtain the following op-

timization problem:

min
1
2

c∑
k=1

 d∑
j=1

w2
jk

σj
+
∑

σj + C̃

n∑
i=1

`(yik(wk · xi))


(3)

subject to the constraints σj ≥ 0.

The sparsity is not controlled by m anymore but by C̃.
Small values of C̃ will yield sparse solutions.

Once (3) has been optimized, there are two possibili-
ties:

1. Just take the solution (i.e the wk) as it is. We will
refer to this as the L1-SVM solution, for reasons that
will become obvious below in section 2.5.

2. Go back to the original (non relaxed) formulation
(2) by fixing σj ← 1σj>0 and optimize (2). This is
equivalent to finding the features through the L1-
SVM algorithm and then train a standard SVM on
these features. We call this method SSVM (Sparse
Support Vector Machines) as it uses the standard
SVM formulation but is constrained to give sparse
solutions.

The details of the optimization technique used to solve
(3) are given in the appendix. The technique uses a com-
bination of a Newton-type algorithm and a path tracking
algorithm; see algorithm 1 for a high level description
of the algorithm. In terms of training time, it is very
efficient because it only involves matrix vector multipli-
cations, where the matrix contains the active features of
the support vectors. Moreover, in some applications such
as text classification, this matrix is sparse.

For a given C̃, algorithm 1 is an active set method and
it converges finitely. Indeed, for a given F , the algorithm
finds the minimizer of (3) and the updating of F implies
that the function value decreases at the next iteration.
This, together with the finite number of choices for F
ensures that algorithm 1 stops after a finite number of
iterations.

Algorithm 1 Path tracking algorithm

C̃ ← ε, F ← ∅
repeat

repeat
Starting from w, σ, minimize (3) under constraints
wjk = 0 for j /∈ F and σj ≥ 0.
F ← {j ∈ F, σj > 0} % Keep active features
F ← F ∪ {j /∈ F, ||gjk|| > 2/C̃} with gjk =
∂
∑n
i=1 `(yik(wk · xi))/∂wjk.

% Add new features
until Set F is stabililized
Record F and w.
C̃ ← 1.5 C̃

until Convergence or F has reached maximum size.

Another possibility is to do alternating optimization on
w and σ [1]. Such an optimization usually has a slower
convergence. But it has the advantage that it is easy to
implement: the optimization on w can be done using a
standard SVM solver after rescaling each input compo-
nent by √σj , while the optimal value of σj can be found
in closed form (see below). This approach is closely re-
lated to the MM algorithm [14] whose convergence can
be established using the Lyapunov method [18].

2.5 Multi-Class L1-SVM

For fixed wjk the objective function in (3) can be min-
imized in closed form with respect to σj . Indeed, the

optimal value of σj is given by σj =
√∑

w2
jk. Plugging

this value in (3), we obtain

d∑
j=1

√√√√ c∑
k=1

w2
jk +

C̃

2

n∑
i=1

`(yik(wk · xi)), (4)

which can be seen as a multiclass extension of L1-SVM.
Indeed, when there is only a single binary classification
problem, the regularizer in (4) is just the L1 norm of the
weight vector. In the multi-class case (4) the optimiza-
tion is more worrisome, not only because the objective
function is not differentiable, but also because linear pro-
gramming techniques cannot be employed. Some tech-
niques [24, 23, 1] based on block coordinate optimization
have however been proposed recently to solve objective
functions with the same regularizers as in (4), sometimes
referred to as an L1/L2 regularizer

2.6 Multi-Class RFE

Another possibility to deal with (2) is the following. In-
stead of optimizing on σ, fix all of them to the value 1
and decide which one to keep based on the gradient. More
precisely, let T (w, σ) denote the objective function in (3)
(with C̃ = C) and define V (σ) = minw T (w, σ). Solving
problem (2) is actually equivalent to minimizing V over
σj ∈ {0, 1},

∑
σj = m. One can do something similar

to RFE: start with all the features (i.e. all σj = 1) and
put one of the σj to 0 such that V is minimized. Keep
doing that until m features are left. An approximate way
of selecting the feature ̂ to suppress is to make a linear
approximation of V and select the smallest component
of the gradient of V : ̂ = arg max ∂V

∂σj

∣∣∣
σ=1

. From the
definition of V we get,

∂V

∂σj

∣∣∣∣
σj=1

=
∂T

∂w︸︷︷︸
=0

∂w

∂σj
+
∂T

∂σj
=

1
2

(−
∑
k

w2
jk + 1).

So ̂ = arg min
∑
k w

2
jk. The criterion is very intuitive: it

removes features for which the weights are small.

3. Experiments

The performance evaluation was done on several text
classification problems in a multi-labeled setting: each
class was considered as an independent binary problem.
We considered the multi-labeled case because several of
our datasets are of this type.

3.1 Algorithms

We evaluated the different algorithms described in the
previous section, i.e., RFE, L1-SVM, and SSVM and
compared them to the Information Gain (IG) method,
which is known to be one of the best filter methods for
text classification [26]. Even though IG has a natural
extension to the multi-class scenario, there are different
ways of using it for the multi-labeled scenario. We se-
lected the features using the sum of the information gains
of all the binary problems as the overall IG criterion.
Thus, the score of feature j is:

c∑
k=1

−H(P (yik = 1)) + P (xij > 0)H(P (yik = 1|xij > 0))

+P (xij = 0)H(P (yik = 1|xij = 0)),
(5)

where H is the binary entropy function, H(t) = t log(t)+
(1 − t) log(1 − t) and P denotes the empirical frequency
over i = 1 . . . n.

For all algorithms, the thresholds were further opti-
mized after training to maximize the F-measure on the
training set. This is the SCut strategy described in [25]
except that we did not use a validation set. For evalu-
ation we used the microaveraged F-measure [19, section
5.3].

For RFE, SSVM and IG, the C parameter of the SVM
was fixed to 10. This large value corresponds closely to
the hard margin SVM. For SSVM and L1-SVM, C̃ was
gradually increased from a small value (corresponding to
a small number of features) to higher values until 5000
features are selected. For RFE, at each step of the algo-
rithm, half of the features were discarded.

Table 1: Properties of the datasets used in this paper,
viz. the number of training documents (n), the num-
ber of features (d) and the number of classes (c). For
these datasets marked ∗, only the c largest classes were
retained.

n d c Description
sector 6412 55197 105 Industry sector [22]
20ng 15935 62061 20 20 Newsgroups [22]
apparel 22148 37144 22 Yahoo! Shopping
webkb 5505 3000 7 [22]
reuters∗1 9228 12317 45 ModApte split [22]
rcv1∗ 11575 47236 52 Half size [19]
ohsumed1 22926 30689 23

3.2 Datasets

We considered 7 datasets, which are summarized in ta-
ble 1. Most of them were randomly split into a training
set and a test set in a 2:1 ratio. The exact number of
training documents can be seen in table 1. Note that
the first 4 datasets are multi-class, while the 3 others are
multi-labeled. All documents were coded with TFIDF
and normalized to norm 1. We used a version of the
webkb dataset where 3000 features have already been
preselected by information gain.

3.3 Results

Performances of the different methods as a function of the
number of features are plotted in figure 1. To have a more
quantitative evaluation, we also computed the number
of features that each method needs to keep in order to
achieve a performance 3% below the performance of an
SVM trained on all the features (right end of the blue and
green curves in figure 1). This was done by computing
the intersects of the different curves with a horizontal
line at the 3% loss level. We summarize in table 2 the
relative feature set size with respect to information gain.
For instance a 7 means that a given method has been able
to find a feature set size 7 times smaller than IG (for the
same performance).

Overall, SSVM is the best performing method. On
some datasets, especially sector and apparel, IG is
quite weak. Despite its simplicity RFE achieved good
results. It is noteworthy that L1-SVM achieves better
results on some datasets than a standard SVM trained on
all the features (e.g., apparel and ohsumed). However
this result in favor L1-SVM has to be taken with care
because it is possible that the value of C = 10 that we
used for SVM is sub-optimal. Note also that on 20ng the
peak performance of L1-SVM was worse than the SVM
trained on all features.

1Downloaded from http://www.kyb.mpg.de/bs/people/

pgehler/rap/index.html

10
3

10
4

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

Number of features

M
ic

ro
 F

−
m

ea
su

re

sector

RFE
L

1
−SVM

SSVM
IG

10
2

10
3

10
4

0.74

0.76

0.78

0.8

0.82

0.84

0.86

Number of features

M
ic

ro
 F

−
m

ea
su

re

reuters

RFE
L

1
−SVM

SSVM
IG

10
3

10
4

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

Number of features

M
ic

ro
 F

−
m

ea
su

re

20NG

RFE
L

1
−SVM

SSVM
IG

10
2

10
3

10
4

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

Number of features

M
ic

ro
 F

−
m

ea
su

re

apparel

RFE
L

1
−SVM

SSVM
IG

10
2

10
3

10
4

0.65

0.7

0.75

0.8

Number of features

M
ic

ro
 F

−
m

ea
su

re

rcv1

RFE
L

1
−SVM

SSVM
IG

10
2

10
3

10
4

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

Number of features

M
ic

ro
 F

−
m

ea
su

re

ohsumed

RFE
L

1
−SVM

SSVM
IG

Figure 1: Microaverage F-measure as a function of the number of selected features on different datasets. webkb is
shown on figure 2

Table 2: Relative reduction of the number of features in
comparison to IG. The number of features was selected
such that there is 3% loss in performance relative to the
SVM trained on all the features. (Thus, higher the num-
ber above 1, better is the performance over IG.) Last
column: number of features for SSVM.

IG RFE L1-SVM SSVM # Feat
sector 1 7.08 5.92 7.29 1536
20ng 1 1.84 2.78 2.34 4528
apparel 1 5.19 8.76 13.36 429
webkb 1 0.78 0.42 1.06 83
reuters 1 1.68 0.57 1.31 189
rcv1 1 1.00 0.79 1.46 443
ohsumed 1 0.71 0.74 1.45 400
Mean 1 2.61 2.85 4.04

10
1

10
2

10
3

0.66

0.68

0.7

0.72

0.74

0.76

0.78

Number of features

M
ic

ro
 F

−
m

ea
su

re

webkb

RFE
L

1
−SVM

SSVM
IG

Figure 2: Continuation of figure 1.

We conclude this section with some running time anal-
ysis of the different algorithms. We take the ohsumed
dataset for this purpose. As it can be seen from figure
3, running times of L1-SVM and SSVM are roughly lin-
ear with respect to the number of selected features. For
selecting 5000 features the typical running times for L1-
SVM and SSVM are in the order of a couple of hours.
Note from the results in table 2 that, when SSVM is used,
for most datasets we can expect accurate results with less
than 1000 features. Therefore SSVM is very affordable.
RFE is a much faster method since it requires only a few
standard SVM trainings and, even when all the features
are present, standard SVM training can be done very fast
[16]. In general, RFE turns out to be an order of mag-
nitude faster than SSVM and L1-SVM. Thus, if training
time happens to be a bottleneck for SSVM, RFE could
be the method of choice given its relatively good results.

10
1

10
2

10
3

10
2

10
3

10
4

Number of features

T
ra

in
in

g
tim

e
(s

ec
)

Figure 3: Total training time for L1-SVM as a function
of the number of features on ohsumed. The relation is
roughly linear. SSVM requires about the same time as
L1-SVM since it uses the feature set found by L1-SVM
and the final SVM training step is in comparison very
fast. The total training time for RFE is 802 seconds.

4. Discussion

The main idea of this paper concerns the suitable setting
up of the regularization part of the training objective to
achieve simultaneous multi-class feature selection. Al-
though in (2) we used a sum of individual one-versus-rest
loss functions, that is not restrictive; we could as well
employ other loss functions that are suited for a given
situation. For instance, for purely multi-class problems
we can use a joint loss function involving the weight vec-
tors of all classes together. For the multi-labeled setting
more sophisticated loss functions based on ranking such
as the one in [6] can be used in association with our reg-
ularization methods.

The parallel works of Obozinski et al and Argyriou et
al [24, 1] use the regularizer in (4), but with the motiva-
tion of using it for multi-task learning. Block coordinate
optimization combined with path tracking is employed in
[24] for training. While these methods are purely tied
to L1 regularization similar to our L1-SVM method, our
SSVM method is an interesting idea that uses L1 regu-
larization as a feature selection method for L2-SVM so-
lution; the idea of scaling factors makes this connection
neatly via the developments in (2)-(3). The performance
difference between L1-SVM and L2-SVM (using all fea-
tures) depends on the dataset. For instance, on 20ng
L2-SVM is clearly superior, while on Ohsumed L1-SVM
is quite better. Therefore, from a practical perspective
SSVM offers a very useful addition because it achieves
the performance of L2-SVM, but with a much smaller
number of features. L1-SVM and SSVM together (with
one or the other chosen by validation) provide a powerful
overall feature selection method.

5. Conclusion

In this paper we have proposed a new class of embedded
methods for simultaneous feature selection in multi-class
and multi-labeled text classification. The methods do ef-
fective feature selection: on some datasets, the feature
set size was an order of magniture smaller than the one
selected by Information Gain (for the same performance
level). They are also computationally efficient and the
structure of the optimization method allows ample scope
for enhancing efficiency using parallel processing tech-
niques.

Finally it is noteworthy that the framework of scal-
ing factors that was used for deriving the new embedded
methods is general and new algorithms for feature selec-
tion can easily be derived from it.

References

[1] A. Argyriou, T. Evgeniou, and M. Pontil. Multi-
task feature learning. In B. Schölkopf, J. Platt, and
T. Hoffman, editors, Advances in Neural Informa-
tion Processing Systems 19, pages 41–48. MIT Press,
Cambridge, MA, 2007.

[2] J. Bi, K. Bennett, M. Embrechts, and C. Breneman.
Dimensionality reduction via sparse support vector
machine. Journal of Machine Learning Research, 3,
2003.

[3] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A train-
ing algorithm for optimal margin classifiers. In Proc.
5th Annu. Workshop on Comput. Learning Theory,
pages 144–152. ACM Press, New York, NY, 1992.

[4] S. Boyd and L. Vandenberghe. Convex Optimiza-
tion. Cambridge University Press, 2004. Availabe at
http://www.stanford.edu/~boyd/cvxbook.

[5] X. Chen, X. Zeng, and D. van Alphen. Multi-class
feature selection for texture classification. Pattern
Recognition Letters, 27(14):1685–1691, 2006.

[6] A. Elisseeff and J. Weston. A kernel method for
multi-labelled classification. In Advances in Neural
Information Processing Systems 14, 2001.

[7] R. Fletcher. Practical Methods of Optimization.
John Wiley and Sons, 1987.

[8] G. Forman. A pitfall and solution in multi-class fea-
ture selection for text classification. In International
Conference on Machine Learning, 2004.

[9] A. Genkin, D. D. Lewis, and D. Madigan. Large scale
bayesian logistic regression for text categorization.
Technometrics, 49:291–304, 2003.

[10] Y. Grandvalet and S. Canu. Adaptive Scaling for
Feature Selection in SVMs. In Advances in Neu-
ral Information Processing Systems, volume 15. MIT
Press, 2003.

[11] I. Guyon and A. Elisseeff. An introduction to vari-
able and feature selection. Journal of Machine
Learning Research, 3:1157–1182, 2003.

[12] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik.
Gene selection for cancer classification using support
vector machines. Machine Learning, 46(1/3):389,
2002.

[13] T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu. The
entire regularization path for the support vector ma-
chine. Journal of Machine Learning Research, pages
1391–1415, 2004.

[14] D. R. Hunter and K. Lange. A tutorial on mm algo-
rithms. The American Statistician, 58:30–37, 2004.

[15] T. Joachims. Text categorization with support vec-
tor machines: learning with many relevant features.
In Proceedings of the 10th European Conference on
Machine Learning, number 1398 in Lectures Notes in
Artificial Intelligence, pages 137–142. Springer Ver-
lag, 1998.

[16] S. S. Keerthi and D. M. DeCoste. A modified finite
Newton method for fast solution of large scale linear
svms. Journal of Machine Learning Research, 6:341–
361, 2005.

[17] T. N. Lal, O. Chapelle, J. Weston, and A. Elisse-
eff. Embedded methods. In I. Guyon, S. Gunn,
M. Nikravesh, and L. Zadeh, editors, Feature Extrac-
tion, Foundations and Applications, pages 137–165.
Springer-Verlag, 2006.

[18] K. Lange. A gradient algorithm locally equivalent
to the em algorithm. Journal of the Royal Statistical
Society, Series B, 57:425–437, 1995.

[19] D. Lewis, Y. Yang, T. Rose, and F. Li. Rcv1:
A new benchmark collection for text categorization
research. Journal of Machine Learning Research,
5:361–397, 2004.

[20] D. Madigan, A. Genkin, D. D. Lewis, S. Argamon,
D. Fradkin, and L. Ye. Author identification on the
large scale. In Classification Society of North Amer-
ica, 2005.

[21] O. Mangasarian. Exact 1-norm support vector ma-
chines via unconstrained convex differentiable min-
imization. Journal of Machine Learning Research,
7:1517–1530, 2006.

[22] A. McCallum and K. Nigam. A comparison of event
models for naive bayes text classification. In AAAI-
98 Workshop on Learning for Text Categorization,
1998.

[23] L. Meier, S. van de Geer, and P. Bühlmann. The
group lasso for logistic regression. Technical Report
TR131, ETH Zürich, 2006.

[24] G. Obozinski, B. Taskar, and M. Jordan. Multi-task
feature selection. Technical report, Department of
Statistics, University of California, Berkeley, 2006.

[25] Y. Yang. A study on thresholding strategies for text
categorization. In Proceedings of SIGIR, pages 137–
145, 2001.

[26] Y. Yang and J. Pedersen. A comparitive study on
feature selection in text categorization. In Interna-
tional Conference on Machine Learning, 1997.

[27] M. Yuan and Y. Lin. Model selection and estimation
in regression with grouped variables. Journal of the
Royal Statistical Society, Series B, 68:49–67, 2006.

[28] J. Zhu, S. Rosset, T. Hastie, and R. Tibshirani. 1-
norm support vector machines. In Advances in Neu-
ral Information Processing Systems, 2003.

Appendix

The optimization of (3) has been implemented as an in-
terior point method: a log barrier on the scaling factors
has been added to the objective: −t

∑
log(σj). Depend-

ing on the value of t, this will force more or less the σ
to be away from 0. We will describe later how to min-
imize this modified objective function for a given value
of t. Usually [4], t is initialized to a large value, the new
unconstrained objective function is minimized, then t is
decreased and this process iterates until t has reached a
sufficiently small value.

We could have done exactly this procedure, but given
that the optimal solution is likely to be sparse, some
time is wasted on optimizing weights and scaling features
which will zero at the end anyway. Instead, we imple-
mented a path tracking approach [13]: C̃ is increased
from a small value to its final value. Given the solution
and the set of active features for a given C̃, the new so-
lution for a larger C̃ can be found efficiently because the
set of active features is likely not to change too much.
Pseudo-code is given in algorithm 1. During this process,
there is no need to vary t since the gradual change in C̃
already makes the optimization well behaved. Thus t is
fixed to a relatively small value, t = 10−3.

Two important ingredients in this algorithm are the
criterion to add and remove features. If t were 0, one
could simply remove the features corresponding to σj =
0. But because of the log barrier, all the σj will be at
least equal to 2t. That is the reason why we decided to
have a relative threshold with respect to t and remove
the features such that σj < 10t.

On the other hand, adding features is based on the link
with L1-SVM (4). One can indeed show that adding an
inactive feature j will decrease the objective function if
and only if

∑
k

(
C̃

2
∂

∂wjk

n∑
i=1

`(yik(wk · xi))

)2

> 1.

Let us now the study the unconstrained minimization
of (3) with the log barrier. To do so we used the the
Levenberg-Marquardt algorithm4, which is basically a
Newton-type algorithm where a ridge is added to the Hes-
sian in order to limit the step size. The expensive part of
this algorithm is to solve the linear system (H+λI)x = g,
where H is the Hessian of the objective function and g its
gradient. To do so, we used a linear conjugate gradient
algorithm with a maximum of 20 iterations.

The Hessian wrt to (w11, w21, . . . , wdc, σ1, . . . , σd) is
. . . 0

...
C̃X>svk

Xsvk
+D−1(σ) D(wk)D−2(σ)

0
. . .

...
. . . D(wk)D−2(σ) . . . D(

∑
k w

2
jk + tσj)D−3(σ)

 ,

where Xsvk
is the matrix containing the support vec-

tors of the k-th classifier and D(v) stands for the diagonal
matrix with vector v on the diagonal. One can see that
most blocks are diagonals and that the bulk of the calcu-
lation in the Hessian vector product are multiplications
by either X or X>. The sparsity of those matrices is the
key element for our algorithm to be fast.

Finally, we used a preconditioner which is equal to the
Hessian, but where X>X is replaced by its diagonal ele-
ments. Thus the preconditioner is diagonal in each block.
In preconditioned conjugate gradient, one needs to invert
the preconditioner efficiently. This is the case here be-
cause the blocks are only on the diagonal and last row
and column.

4We could also have used nonlinear conjugate gradient. [7, Al-
gorithm 5.2.7]

