
2 Training a Support Vector Machine in the

Primal

Olivier Chapelle olivier.chapelle@tuebingen.mpg.de

MPI for Biological Cybernetics

72076 Tübingen, Germany

Most literature on Support Vector Machines (SVMs) concentrate on the dual

optimization problem. In this paper, we would like to point out that the primal

problem can also be solved efficiently, both for linear and non-linear SVMs, and that

there is no reason to ignore this possibility. On the contrary, from the primal point

of view new families of algorithms for large scale SVM training can be investigated.

2.1 Introduction

The vast majority of text books and articles introducing Support Vector Machines

(SVMs) first state the primal optimization problem, and then go directly to the

dual formulation (Vapnik, 1998; Burges, 1998; Cristianini and Shawe-Taylor, 2000;

Schölkopf and Smola, 2002). A reader could easily obtain the impression that this

is the only possible way to train an SVM.

In this paper, we would like to reveal this as being a misconception, and show

that someone unaware of duality theory could train an SVM. Primal optimizations

of linear SVMs have already been studied by Keerthi and DeCoste (2005);

Mangasarian (2002). One of the main contributions of this paper is to complement

those studies to include the non-linear case.1 Our goal is not to claim that the

primal optimization is better than dual, but merely to show that they are two

equivalent ways of reaching the same result. Also, we will show that when the goal

is to find an approximate solution, primal optimization is superior.

1. Primal optimization of non-linear SVMs have also been proposed in (Lee and
Mangasarian, 2001b, Section 4), but with a different regularizer.

34 Training a Support Vector Machine in the Primal

Given a training set {(xi, yi)}1≤i≤n,xi ∈ R
d, yi ∈ {+1,−1}, recall that the primal

SVM optimization problem is usually written as:

min
w,b
||w||2 +C

n
∑

i=1

ξp
i under constraints yi(w ·xi + b) ≥ 1− ξi, ξi ≥ 0. (2.1)

where p is either 1 (hinge loss) or 2 (quadratic loss). At this point, in the literature

there are usually two main reasons mentioned for solving this problem in the dual:

1. The duality theory provides a convenient way to deal with the constraints.

2. The dual optimization problem can be written in terms of dot products, thereby

making it possible to use kernel functions.

We will demonstrate in section 3 that those two reasons are not a limitation

for solving the problem in the primal, mainly by writing the optimization problem

as an unconstrained one and by using the representer theorem. In section 4, we

will see that performing a Newton optimization in the primal yields exactly the

same computational complexity as optimizing the dual; that will be validated

experimentally in section 5. Finally, possible advantages of a primal optimization

are presented in section 6. But we will start now with some general discussion about

primal and dual optimization.

2.2 Links between primal and dual optimization

As mentioned in the introduction, primal and dual optimization have strong

connections and we illustrate some of them through the example of regularized

least-squares (RLS).

Given a matrix X ∈ R
n×d representing the coordinates of n points in d dimensions

and a target vector y ∈ R
n, the primal RLS problem can be written as

min
w∈Rd

λw⊤w + ‖Xw − y‖2, (2.2)

where λ is the regularization parameter. This objective function is minimized for

w = (X⊤X + λI)−1X⊤y and its minimum is

y⊤y − y⊤X(X⊤X + λI)−1X⊤y. (2.3)

Introducing slack variables ξ = Xw − y, the dual optimization problem is

max
α∈Rn

2α⊤y − 1

λ
α⊤(XX⊤ + λI)α. (2.4)

The dual is maximized for α = λ(XX⊤ + λI)−1y and its maximum is

λy⊤(XX⊤ + λI)−1y. (2.5)

2.2 Links between primal and dual optimization 35

The primal solution is then given by the KKT condition,

w =
1

λ
X⊤α. (2.6)

Now we relate the inverses of XX⊤ +λI and X⊤X +λI thanks to the Woodbury

formula (Golub and Loan, 1996, page 51),

λ(XX⊤ + λI)−1 = I −X(λI + X⊤X)−1X⊤ (2.7)

With this equality, we recover that primal (2.3) and dual (2.5) optimal values are

the same, i.e. that the duality gap is zero.

Let us now analyze the computational complexity of primal and dual optimization.

The primal requires the computation and inversion of the matrix (X⊤X+λI), which

is in O(nd2 + d3). On the other hand, the dual deals with the matrix (XX⊤ + λI),

which requires O(dn2 + n3) operations to compute and invert. It is often argued

that one should solve either the primal or the dual optimization problem depending

on whether n is larger or smaller than d, resulting in an O(max(n, d)min(n, d)2)

complexity. But this argument does not really hold because one can always use (2.7)

in case the matrix to invert is too big.2 So both for primal and dual optimization,

the complexity is O(max(n, d)min(n, d)2).

The difference between primal and dual optimization comes when computing

approximate solutions. Let us optimize both the primal (2.2) and dual (2.4)

objective functions by conjugate gradient and see how the primal objective function

decreases as a function of the number of conjugate gradient steps. For the dual

optimization, an approximate dual solution is converted to an approximate primal

one by using the KKT condition (2.6).

Intuitively, the primal optimization should be superior because it directly

minimizes the quantity we are interested in. Figure 2.1 confirms this intuition.

In some cases, there is no difference between primal and dual optimization (left),

but in some other cases, the dual optimization can be slower to converge (right).3 In

Appendix 2.A, we try to analyze this phenomenon by looking at the primal objective

value after one conjugate gradient step. We show that the primal optimization

always yields a lower value than the dual optimization, and we quantify the

difference.

The conclusion from this analysis is that even though primal and dual optimization

are equivalent, both in terms of the solution and time complexity, when it comes

to approximate solution, primal optimization is superior because it is more focused

on minimizing what we are interested in: the primal objective function. In general

2. Note that primal optimization with the Woodbury formula is in general not equivalent
to dual optimization (even though they have the same complexity). Indeed, the dual
problem involves the conjugate of the loss function. RLS is a special case because t→ 1

2
t2

is self-conjugate.
3. As discussed above the time complexity is the same for finding the exact solution. But
with approximate methods, this is not necessarily the case.

36 Training a Support Vector Machine in the Primal

0 2 4 6 8 10
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Number of CG iterations

P
rim

al
 s

ub
op

tim
al

ity

Primal
Dual

0 2 4 6 8 10
10

−15

10
−10

10
−5

10
0

10
5

Number of CG iterations

P
rim

al
 s

ub
op

tim
al

ity

Primal
Dual

Figure 2.1: Plots of the primal suboptimality, (2.2)-(2.3), for primal and
dual optimization by conjugate gradient (pcg in Matlab). n points are drawn
randomly from a spherical Gaussian distribution in d dimensions. The targets
are also randomly generated according a Gaussian distribution. λ is fixed to
1. Left, n = 10 and d = 100. Right, n = 100 and d = 10.

there is indeed no guarantee that an approximate dual solution yields a good

approximate primal solution.

2.3 Primal objective function

Coming back to Support Vector Machines, let us rewrite (2.1) as an unconstrained

optimization problem:

||w||2 + C
n
∑

i=1

L(yi,w · xi + b), (2.8)

with L(y, t) = max(0, 1− yt)p (see figure 2.2). More generally, L could be any loss

function.

Let us now consider non-linear SVMs with a kernel function k and an associated

Reproducing Kernel Hilbert Space H. The optimization problem (2.8) becomes

min
f∈H

λ||f ||2H +

n
∑

i=1

L(yi, f(xi)), (2.9)

where we have made a change of variable by introducing the regularization

parameter λ = 1/C. We have also dropped the offset b for the sake of simplicity.

However all the algebra presented below can be extended easily to take it into

account (see Appendix 2.B).

Suppose now that the loss function L is differentiable with respect to its

second argument. Using the reproducing property f(xi) = 〈f, k(xi, ·)〉H, we can

differentiate (2.9) with respect to f and at the optimal solution f∗, the gradient

2.3 Primal objective function 37

−0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

Output

Lo
ss

Linear
Quadratic

Figure 2.2: SVM loss function, L(y, t) = max(0, 1− yt)p for p = 1 and 2.

vanishes, yielding

2λf∗ +

n
∑

i=1

∂L

∂t
(yi, f

∗(xi))k(xi, ·) = 0, (2.10)

where ∂L/∂t is the partial derivative of L(y, t) with respect to its second argument.

This implies that the optimal function can be written as a linear combination of

kernel functions evaluated at the training samples. This result is also known as the

representer theorem (Kimeldorf and Wahba, 1970).

Thus, we seek a solution of the form:

f(x) =

n
∑

i=1

βik(xi,x). (2.11)

We denote those coefficients βi and not αi as in the standard SVM literature to

stress that they should not be interpreted as Lagrange multipliers.

Let us express (2.9) in term of βi,

λ

n
∑

i,j=1

βiβjk(xi,xj) +

n
∑

i=1

L



yi,

n
∑

j=1

k(xi,xj)βj



 , (2.12)

where we used the kernel reproducing property in ||f ||2
H

=
∑n

i,j=1 βiβj <

k(xi, ·), k(xj , ·) >H=
∑n

i,j=1 βiβjk(xi,xj).

Introducing the kernel matrix K with Kij = k(xi,xj) and Ki the ith column of

K, (2.12) can be rewritten as

Ω(β) := λβ⊤Kβ +
n
∑

i=1

L(yi,K
⊤
i β). (2.13)

As long as L is differentiable, we can optimize (2.13) by gradient descent. Note

38 Training a Support Vector Machine in the Primal

that this is an unconstrained optimization problem.

2.4 Newton optimization

The unconstrained objective function (2.13) can be minimized using a variety of

optimization techniques such as conjugate gradient. Here we will only consider

Newton optimization as the similarities with dual optimization will then appear

clearly.

We will focus on two loss functions: the quadratic penalization of the training

errors (figure 2.2) and a differentiable approximation to the linear penalization, the

Huber loss.

2.4.1 Quadratic loss

Let us start with the easiest case, the L2 penalization of the training errors,

L(yi, f(xi)) = max(0, 1− yif(xi))
2.

For a given value of the vector β, we say that a point xi is a support vector if

yif(xi) < 1, i.e. if the loss on this point is non zero. Note that this definition of

support vector is different from βi 6= 0 4. Let us reorder the training points such

that the first nsv points are support vectors. Finally, let I0 be the n × n diagonal

matrix with the first nsv entries being 1 and the others 0,

I0 ≡



























1

. . . 0

1

0

0
. . .

0



























4. From (2.10), it turns out at the optimal solution that the sets {i, βi 6= 0} and
{i, yif(xi) < 1} will be the same. To avoid confusion, we could have defined this latter
as the set of error vectors.

2.4 Newton optimization 39

The gradient of (2.13) with respect to β is

∇ = 2λKβ +

nsv
∑

i=1

Ki

∂L

∂t
(yi,K

⊤
i β)

= 2λKβ + 2

nsv
∑

i=1

Kiyi(yiK
⊤
i β − 1)

= 2(λKβ + KI0(Kβ − Y)), (2.14)

and the Hessian,

H = 2(λK + KI0K). (2.15)

Each Newton step consists of the following update,

β ← β − γH−1∇,

where γ is the step size found by line search or backtracking (Boyd and Vandenberghe,

2004, Section 9.5). In our experiments, we noticed that the default value of γ = 1

did not result in any convergence problem, and in the rest of this section we only

consider this value. However, to enjoy the theoretical properties concerning the

convergence of this algorithm, backtracking is necessary.

Combining (2.14) and (2.15) as ∇ = Hβ−2KI0Y , we find that after the update,

β = (λK + KI0K)−1KI0Y

= (λIn + I0K)−1I0Y (2.16)

Note that we have assumed that K (and thus the Hessian) is invertible. If K is

not invertible, then the expansion is not unique (even though the solution is), and

(2.16) will produce one of the possible expansions of the solution. To avoid these

problems, let us simply assume that an infinitesimally small ridge has been added

to K.

Let Ip denote the identity matrix of size p× p and Ksv the first nsv columns and

rows of K, i.e. the submatrix corresponding to the support vectors. Using the fact

that the lower left block λIn + I0K is 0, the inverse of this matrix can be easily

computed, and finally, the update (2.16) turns out to be

β =

(

(λInsv
+ Ksv)

−1 0

0 0

)

Y,

=

(

(λInsv
+ Ksv)

−1Ysv

0

)

. (2.17)

If the current solution is far from the optimal one, the set sv might be large and

some computational ressources wasted on trying to invert (2.17). We will present

later (algorithm 2.1) a way to avoid this problem.

40 Training a Support Vector Machine in the Primal

2.4.1.1 Link with dual optimization

Update rule (2.17) is not surprising if one has a look at the SVM dual optimization

problem:

max
α

n
∑

i=1

αi −
1

2

n
∑

i,j=1

αiαjyiyj(Kij + λδij), under constraints αi ≥ 0.

Consider the optimal solution: the gradient with respect to all αi > 0 (the support

vectors) must be 0,

1− diag(Ysv)(Ksv + λInsv
)diag(Ysv)α = 0,

where diag(Y) stands for the diagonal matrix with the diagonal being the vector

Y . Thus, up to a sign difference, the solutions found by minimizing the primal and

maximizing the dual are the same: βi = yiαi.

2.4.1.2 Complexity analysis

Only a couple of iterations are usually necessary to reach the solution (rarely more

than 5), and this number seems independent of n. The overall complexity is thus

the complexity of one Newton step, which is O(nnsv + n3
sv

). Indeed, the first term

corresponds to finding the support vectors (i.e. the points for which yif(xi) < 1)

and the second term is the cost of inverting the matrix Ksv + λInsv
. It turns out

that this is the same complexity as in standard SVM learning (dual maximization)

since those 2 steps are also necessary. Of course nsv is not known in advance and

this complexity analysis is an a posteriori one. In the worse case, the complexity is

O(n3).

It is important to note that in general this time complexity is also a lower bound

(for the exact computation of the SVM solution). Chunking and decomposition

methods, for instance (Joachims, 1999; Osuna et al., 1997), do not help since there

is fundamentally a linear system of size nsv to be be solved.5 Chunking is only

useful when the Ksv matrix cannot fit in memory. Keep in mind that we did not

take into account the complexity of computing entries of the kernel matrix: in

practice, training time of different SVM solvers can differ significantly based on the

kernel cache strategy (see also chapter 1).

5. We considered here that solving a linear system (either in the primal or in the dual)
takes cubic time. This time complexity can however be improved.

2.4 Newton optimization 41

2.4.2 Huber / hinge loss

The hinge loss used in SVMs is not differentiable. We propose to use a differentiable

approximation of it, inspired by the Huber loss (cf figure 2.3):

L(y, t) =















0 if yt > 1 + h
(1+h−yt)2

4h
if |1− yt| ≤ h

1− yt if yt < 1− h

(2.18)

where h is a parameter to choose, typically between 0.01 and 0.5.

Note that we are not minimizing the hinge loss, but this does not matter, since

from a machine learning point of view there is no reason to prefer the hinge loss

anyway. If really one wants to approach the hinge loss solution, one can make h→ 0

(similarly to (Lee and Mangasarian, 2001b)).

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

yt

lo
ss

Quadratic

Linear

Figure 2.3: The Huber loss is a differentiable approximation of the hinge
loss. The plot is (2.18) with h = 0.5.

The derivation of the Newton step follows the same line as for the L2 loss and

we will not go into the details. The algebra is just a bit more complicated because

there are 3 different parts in the loss (and thus 3 different categories of points):

nsv of them are in the quadratic part of loss;

ns̄v are in the linear part of the loss. We will call this category of points the

support vectors “at bound”, in reference to dual optimization where the Lagrange

multipliers associated with those points are at the upper bound C.

The rest of the points have zero loss.

We reorder the training set in such a way that the points are grouped in the 3

above categories. As in the previous section, I0 corresponds to the points in the

first category. For the points in the second category, let I1 be diagonal matrix with

42 Training a Support Vector Machine in the Primal

first nsv 0 elements followed by ns̄v 1 elements (and 0 for the rest).

The gradient is

∇ = 2λKβ +
KI0(Kβ − (1 + h)Y)

2h
−KI1Y

and the Hessian

H = 2λK +
KI0K

2h
.

Thus,

∇ = Hβ −K

(

1 + h

2h
I0 + I1

)

Y

and the new β is

β =

„

2λIn +
I0K

2h

«−1„

1 + h

2h
I0 + I1

«

Y

=

0

B

@

(4hλInsv
+ Ksv)

−1((1 + h)Ysv −Ksv,s̄vYs̄v/(2λ))

Ys̄v/(2λ)

0

1

C

A
≡

0

B

@

βsv

βs̄v

0

1

C

A
. (2.19)

Again, one can see the link with the dual optimization: letting h→ 0, the primal

and the dual solution are the same, βi = yiαi. This is obvious for the points in

the linear part of the loss (with C = 1/(2λ)). For the points that are right on the

margin, their output is equal to their label,

Ksvβsv + Ksv,s̄vβs̄v = Ysv.

But since βs̄v = Ys̄v/(2λ),

βsv = K−1
sv

(Ysv −Ksv,s̄vYs̄v/(2λ)),

which is the same equation as the first block of (2.19) when h→ 0.

2.4.2.1 Complexity analysis

Similar to the quadratic loss, the complexity is O(n3
sv

+ n(nsv + ns̄v)). The nsv + ns̄v

factor is the complexity for computing the output of one training point (number of

nonzero elements in the vector β). Again, the complexity for dual optimization is

the same since both steps (solving a linear system of size nsv and computing the

outputs of all the points) are required.

2.4.3 Other losses

Some other losses have been proposed to approximate the SVM hinge loss (Lee

and Mangasarian, 2001b; Zhang et al., 2003; Zhu and Hastie, 2005). However, none

of them has a linear part and the overall complexity is O(n3) which can be much

2.5 Experiments 43

larger than the complexity of standard SVM training. More generally, the size of

the linear system to solve is equal to nsv, the number of training points for which
∂2L
∂t2

(yi, f(xi)) 6= 0. If there are some large linear parts in the loss function, this

number might be much smaller than n, resulting in significant speed-up compared

to the standard O(n3) cost.

2.5 Experiments

The experiments in this section can be considered as a sanity check to show that

primal and dual optimization of a non-linear SVM have similar time complexities.

However, for linear SVMs, the primal optimization is definitely superior (Keerthi

and DeCoste, 2005) as illustrated below.6

Some Matlab code for the quadratic penalization of the errors and taking into

account the bias b is available online at: http://www.kyb.tuebingen.mpg.de/bs/

people/chapelle/primal.

2.5.1 Linear SVM

In the case of quadratic penalization of the training errors, the gradient of the

objective function (2.8) is

∇ = 2w + 2C
∑

i∈sv

(w · xi − yi)xi,

and the Hessian is

H = Id + C
∑

i∈sv

xix
⊤
i .

The computation of the Hessian is in O(d2nsv) and its inversion in O(d3). When

the number of dimensions is relatively small compared to the number of training

samples, it is advantageous to optimize directly on w rather than on the expansion

coefficients. In the case where d is large, but the data is sparse, the Hessian should

not be built explicitly. Instead, the linear system H−1∇ can be solved efficiently

by conjugate gradient (Keerthi and DeCoste, 2005).

Training time comparison on the Adult dataset (Platt, 1998) in presented in figure

2.4. As expected, the training time is linear for our primal implementation, but the

scaling exponent is 2.2 for the dual implementation of LIBSVM (comparable to the

1.9 reported in (Platt, 1998)). This exponent can be explained as follows : nsv is

very small (Platt, 1998, Table 12.3) and ns̄v grows linearly with n (the misclassified

6. For a dual optimizer to be competitive, it needs to make use of the fact that the kernel
matrix is low rank. For instance, the Lagrangian SVM (Mangasarian and Musicant, 2001)
relies on the Woodbury formula (2.7) to train linear SVMs.

44 Training a Support Vector Machine in the Primal

training points). So for this dataset the complexity of O(n3
sv

+ n(nsv + ns̄v)) turns

out to be about O(n2).

10
3

10
4

10
−1

10
0

10
1

10
2

Training set size

T
im

e
(s

ec
)

LIBSVM
Newton Primal

Figure 2.4: Time comparison of LIBSVM (an implementation of SMO (Platt,
1998)) and direct Newton optimization on the normal vector w.

It is noteworthy that, for this experiment, the number of Newton steps required to

reach the exact solution was 7. More generally, this algorithm is usually extremely

fast for linear SVMs.

2.5.2 L2 loss

We now compare primal and dual optimization for non-linear SVMs. To avoid

problems of memory management and kernel caching and to make time comparison

as straightforward as possible, we decided to precompute the entire kernel matrix.

For this reason, the Adult dataset used in the previous section is not suitable

because it would be difficult to fit the kernel matrix in memory (about 8G).

Instead, we used the USPS dataset consisting of 7291 training examples. The

problem was made binary by classifying digits 0 to 4 versus 5 to 9. An RBF kernel

with bandwidth σ = 8 was chosen,

K(xi,xj) = exp

(

−||xi − xj ||2
2σ2

)

.

We consider in this section the hard margin SVM by fixing λ to a very small value,

namely 10−8.

The training for the primal optimization is performed as follows (see algorithm

2.1): we start from a small number of training samples, train, double the number

of samples, retrain and so on. In this way, the set of support vectors is rather well

identified (otherwise, we would have to invert an n× n matrix in the first Newton

2.5 Experiments 45

step).

Algorithm 2.1 SVM primal training by Newton optimization

Function: β = PrimalSVM(K,Y,λ)
n← length(Y) % Number of training points

if n > 1000 then

n2 ← n/2 % Train first on a subset to estimate the decision boundary

β ← PrimalSVM(K1..n2,1..n2
, Y1..n2

, λ)]
sv← non zero components of β

else

sv← {1, . . . , n}.
end if

repeat

β
sv
← (Ksv + λInsv

)−1Ysv

Other components of β ← 0
sv← indices i such that yi[Kβ]i < 1

until sv has not changed

The time comparison is plotted in figure 2.5: the running times for primal and

dual training are almost the same. Moreover, they are directly proportional to n3
sv

,

which turns out to be the dominating term in the O(nnsv + n3
sv

) time complexity.

In this problem nsv grows approximately like
√

n. This seems to be in contradiction

with the result of Steinwart (2003), which states than the number of support vectors

grows linearly with the training set size. However this result holds only for noisy

problems, and the USPS dataset has a very small noise level.

10
2

10
3

10
4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Training set size

T
ra

in
in

g
tim

e
(s

ec
)

LIBSVM
Newton − Primal
n

sv
3 (× 10−8)

Figure 2.5: With the L2 penalization of the slacks, the parallel between dual
optimization and primal Newton optimization is striking: the training times
are almost the same (and scale in O(n3

sv)). Note that both solutions are exactly

the same.

46 Training a Support Vector Machine in the Primal

Even though we ignored the time spent on computing the kernel matrix, it is

noteworthy that algorithm 2.1 only needs the compute submatrix Kij , 1 ≤ i ≤
n, i ∈ sv. So the number of kernel evaluations would typically be of the order of nnsv,

as for dual methods (see chapter 1). If this matrix does not fit in memory, shrinking

can be used. But if Ksv is also too big, then one has to resort to approximations

(see section 2.6).

2.5.3 Huber loss

We perform the same experiments as in the previous section, but introduced noise

in the labels: for randomly chosen 10% of the points, the labels are flipped. In

this kind of situation the L2 loss is not well suited, because it penalizes the noisy

examples too much. However if the noise were, for instance, Gaussian in the inputs,

then the L2 loss would have been very appropriate.

We will study the time complexity and the test error when we vary the parameter

h. Note that the solution will not usually be exactly the same as for a standard

hinge loss SVM (it will only be the case in the limit h → 0). The regularization

parameter λ was set to 1/8, which corresponds to the best test performance.

In the experiments described below, a line search was performed in order to make

Newton converge more quickly. This means that instead of using (2.19) for updating

β, the following step was made,

β ← β − tH−1∇,

where t ∈ [0, 1] is found by 1D minimization. This additional line search does not

increase the complexity since it is just O(n). Indeed, given the direction u = H−1∇,

let us the write the objective function (2.13) along this line as

g(t) := Ω(β + tu) = λ(β⊤Kβ + 2tu⊤Kβ + t2u⊤Ku) +

n
∑

i=1

L(yi,K
⊤
i β + tK⊤

i u).

This function g takes O(n) operations to evaluate once Kβ and Ku have been

precomputed. Its minimum is easily found after couple of 1D Newton steps. For the

L2 loss described in the previous section, this line search was not necessary and full

Newton steps were taken (t = 1).

2.5.3.1 Influence of h

As expected the left hand side of figure 2.6 shows that the test error is relatively

unaffected by the value of h, as long as it is not too large. For h = 1, the loss looks

more like the L2 loss, which is inappropriate for the kind of noise we generated.

Concerning the time complexity (right hand side of figure 2.6), there seems to be

an optimal range for h. When h is too small, the problem is highly non-quadratic

(because most of the loss function is linear), and a lot of Newton steps are necessary.

On the other hand, when h is large, nsv increases, and since the complexity is mainly

2.5 Experiments 47

in O(n3
sv

), the training time increases (cf figure 2.7).

10
−2

10
−1

10
0

0.145

0.15

0.155

0.16

0.165

0.17

0.175

0.18

h

T
es

t e
rr

or

C=10
C=1

10
−2

10
−1

10
0

1.5

2

2.5

3

h

tim
e

(s
ec

)

Figure 2.6: Influence of h on the test error (left, n=500) and the training
time (right, n = 1000)

10
−2

10
−1

200

250

300

350

400

h

N
um

be
r

of
 s

up
po

rt
 v

ec
to

rs

n
sv

 free

n
sv

 at bound

Figure 2.7: When h increases, more points are in the quadratic part of
the loss (nsv increases and ns̄v decreases). The dashed lines are the LIBSVM
solution. For this plot, n = 1000.

2.5.3.2 Time comparison with LIBSVM

Figure 2.8 presents a time comparison of both optimization methods for different

training set sizes. As for the quadratic loss, the time complexity is O(n3
sv

).

However, unlike figure 2.5, the constant for LIBSVM training time is better. This

is probably the case because the loss function is far from quadratic and the Newton

optimization requires more steps to converge (on the order of 30). But we believe

that this factor can be improved on by not inverting the Hessian from scratch

48 Training a Support Vector Machine in the Primal

in each iteration or by using a more direct optimizer such as conjugate gradient

descent.

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

Training set size

T
ra

in
in

g
tim

e
(s

ec
)

LIBSVM

Newton − primal
n

sv
3 (× 10−8)

Figure 2.8: Time comparison between LIBSVM and Newton optimization.
Here nsv has been computed from LIBSVM (note that the solutions are not
exactly the same). For this plot, h = 2−5.

2.6 Advantages of primal optimization

As explained throughout this paper, primal and dual optimizations are very similar,

and it is not surprising that they lead to same computational complexity, O(nnsv +

n3
sv

). So is there a reason to use one rather than the other?

We believe that primal optimization might have advantages for large scale

optimization. Indeed, when the number of training points is large, the number

of support vectors is also typically large and it becomes intractable to compute the

exact solution. For this reason, one has to resort to approximations (Bordes et al.,

2005; Bakır et al., 2005; Collobert et al., 2002; Tsang et al., 2005); see also chapters

3 and 14 of this book. But introducing approximations in the dual may not be

wise. There is indeed no guarantee that an approximate dual solution yields a good

approximate primal solution. Since what we are eventually interested in is a good

primal objective function value, it is more straightforward to directly minimize it

(cf the discussion at the end of Section 2.2).

Below are some examples of approximation strategies for primal minimization.

One can probably come up with many more, but our goal is just to give a flavor of

what can be done in the primal.

2.6 Advantages of primal optimization 49

2.6.1 Conjugate gradient

One could directly minimize (2.13) by conjugate gradient descent. For squared loss

without regularizer, this approach has been investigated in (Ong, 2005). The hope

is that on a lot of problems a reasonable solution can be obtained with only a couple

of gradient steps.

In the dual, this strategy is hazardous: there is no guarantee that an approximate

dual solution corresponds to a reasonable primal solution. We have indeed shown

in Section 2 and Appendix 2.A that for a given number of conjugate gradient steps,

the primal objective function was lower when optimizing the primal than when

optimizing the dual.

However one needs to keep in mind that the performance of a conjugate gradient

optimization strongly depends on the parametrization of the problem. In Section

2, we analyzed an optimization in terms of the primal variable w, whereas in the

rest of the paper, we used the reparametrization (2.11) with the vector β. The

convergence rate of conjugate gradient depends on the condition number of the

Hessian (Shewchuk, 1994). For an optimization on β, it is roughly equal to the

condition number of K2 (cf equation (2.15)), while for an optimization on w, this

is the condition number of K.

So optimizing on β could be much slower. There is fortunately an easy fix to this

problem: preconditioning by K. In general, preconditioning by a matrix M requires

to be able to compute efficiently M−1∇, where ∇ is the gradient (Shewchuk, 1994,

Section B5). But in our case, it turns out that one can factorize K in the expression

of the gradient (2.14) and the computation of K−1∇ becomes trivial. With this

preconditioning (which comes at no extra computational cost), the convergence rate

is now the same as for the optimization on w. In fact, in the case of regularized

least squares of section 2, one can show that the conjugate gradient steps for the

optimization on w and for the optimization on β with preconditioning are identical.

Pseudocode for optimizing (2.13) using the Fletcher-Reeves update and this

preconditioning is given in algorithm 2.2. Note that in this pseudocode g is exactly

the gradient given in (2.14) but “divided” by K. Finally, we would like to point out

that algorithm 2.2 has another interesting interpretation: it is indeed equivalent to

performing a conjugate gradients minimization on w (cf (2.8)), while maintaining

the solution in terms of β, i.e. such that w =
∑

βixi. This is possible because at

each step of the algorithm, the gradient (with respect to w) is always in the span of

the training points. More precisely, we have that the gradient of (2.8) with respect

to w is
∑

(gnew)ixi.

Let us now have an empirical study of the conjugate gradient behavior. As in the

previous section, we considered the 7291 training examples of the USPS dataset.

We monitored the test error as a function of the number of conjugate gradient

iterations. It can be seen in figure 2.9 that

A relatively small number of iterations (between 10 and 100) are enough to reach

a good solution. Note that the test errors at the right of the figure (corresponding

50 Training a Support Vector Machine in the Primal

Algorithm 2.2 Optimization of (2.13) (with the L2 loss) by preconditioned

conjugate gradients.

Let β = 0 and d = gold = −Y
repeat

Let t∗ be the minimizer of (2.13) on the line β + td.
β ← β + t∗d.
Let o = Kβ − Y and sv = {i, oiyi < 1}. Update I0.
gnew ← 2λβ + I0o.

d← −gnew +
g
⊤

new
Kgnew

g
⊤

old
Kgold

d.
gold ← gnew.

until ||gnew|| ≤ ε

to 128 iterations) are the same as for a fully trained SVM: the objective values have

almost converged at this point.

The convergence rate depends, via the condition number, on the bandwidth σ.

For σ = 1, K is very similar to the identity matrix and one step is enough to be

close to the optimal solution. However, the test error is not so good for this value

of σ and one should set it to 2 or 4.

10
0

10
1

10
2

10
−2

10
−1

Number of CG iterations

T
es

t e
rr

or

σ=1
σ=2
σ=4
σ=8

Figure 2.9: Optimization of the objective function (2.13) by conjugate
gradient for different values of the kernel width.

It is noteworthy that the preconditioning discussed above is really helpful. For

instance, without it, the test error is still 1.84% after 256 iterations with σ = 4.

Finally, note that each conjugate gradient step requires the computation of Kβ (cf

equation (2.14)) which takes O(n2) operations. If one wants to avoid recomputing

the kernel matrix at each step, the memory requirement is also O(n2). Both time and

memory requirement could probably be improved to O(n2
sv

) per conjugate gradient

iteration by directly working on the linear system (2.19). But this complexity is

probably still too high for large scale problems. Here are some cases where the

2.6 Advantages of primal optimization 51

matrix vector multiplication can be done more efficiently.

Sparse kernel If a compactly supported RBF kernel (Schaback, 1995; Fasshauer,

2005) is used, the kernel matrix K is sparse. The time and memory complexities

are then proportional to the number of non-zeros elements in K. Also, when the

bandwidth of the Gaussian RBF kernel is small, the kernel matrix can be well

approximated by a sparse matrix.

Low rank Whenever the kernel matrix is (approximately) low rank, one can write

K ≈ AA⊤ where A ∈ R
n×p can be found through an incomplete Cholesky

decomposition in O(np2) operations. The complexity of each conjugate iteration is

then O(np). This idea has been used in (Fine and Scheinberg, 2001) in the context

of SVM training, but the authors considered only dual optimization. Note that the

kernel matrix is usually low rank when the bandwidth of the Gaussian RBF kernel

is large.

Fast Multipole Methods Generalizing both cases above, Fast Multipole methods

and KD-Trees provide an efficient way of computing the multiplication of an RBF

kernel matrix with a vector (Greengard and Rokhlin, 1987; Gray and Moore, 2000;

Yang et al., 2004; de Freitas et al., 2005; Shen et al., 2006). These methods have

been successfully applied to Kernel Ridge Regression and Gaussian Processes, but

do not seem to be able to handle high dimensional data. See (Lang et al., 2005) for

an empirical study of time and memory requirement of these methods.

2.6.2 Reduced expansion

Instead of optimizing on a vector β of length n, one can choose a small subset

of the training points to expand the solution on and optimize only those weights.

More precisely, the same objective function (2.9) is considered, but unlike (2.11),

it is optimized on the subset of the functions expressed as

f(x) =
∑

i∈S

βik(xi,x), (2.20)

where S is a subset of the training set. This approach has been pursued in chapter 3

where the set S is greedily constructed and in (Lee and Mangasarian, 2001a) where

S is selected randomly. If S contains k elements, these methods have a complexity

of O(nk2) and a memory requirement of O(nk).

2.6.3 Model selection

Another advantage of primal optimization is when some hyperparameters are

optimized on the training cost function (Chapelle et al., 2002; Grandvalet and Canu,

2002). If θ is a set of hyperparameters and α the dual variables, the standard way

of learning θ is to solve a min max problem (remember that the maximum of the

52 Training a Support Vector Machine in the Primal

dual is equal to the minimum of the primal):

min
θ

max
α

Dual(α,θ),

by alternating between minimization on θ and maximization on α (see for instance

(Grandvalet and Canu, 2002) for the special case of learning scaling factors). But if

the primal is minimized, a joint optimization on β and θ can be carried out, which

is likely to be much faster.

Finally, to compute an approximate leave-one-out error, the matrix Ksv + λInsv

needs to be inverted (Chapelle et al., 2002); but after a Newton optimization, this

inverse is already available in (2.17).

2.7 Conclusion

In this paper, we have studied the primal optimization of non-linear SVMs and

derived the update rules for a Newton optimization. From these formulae, it appears

clear that there are strong similarities between primal and dual optimization.

Also, the corresponding implementation is very simple and does not require any

optimization libraries.

The historical reasons for which most of the research in the last decade has been

about dual optimization are unclear. We believe that it is because SVMs were first

introduced in their hard margin formulation (Boser et al., 1992), for which a dual

optimization (because of the constraints) seems more natural. In general, however,

soft margin SVMs should be preferred, even if the training data are separable:

the decision boundary is more robust because more training points are taken into

account (Chapelle et al., 2000).

We do not pretend that primal optimization is better in general; our main

motivation was to point out that primal and dual are two sides of the same coin and

that there is no reason to look always at the same side. And by looking at the primal

side, some new algorithms for finding approximate solutions emerge naturally. We

believe that an approximate primal solution is in general superior to a dual one

since an approximate dual solution can yield a primal one which is arbitrarily bad.

In addition to all the possibilities for approximate solutions mentioned in

this paper, the primal optimization also offers the advantage of tuning the

hyperparameters simultaneously by performing a conjoint optimization on parameters

and hyperparameters.

Acknowledgments

We are grateful to Adam Kowalczyk and Sathiya Keerthi for helpful comments.

2.7 Conclusion 53

Appendix

2.A Primal suboptimality

Let us define the following quantities,

A = y⊤y

B = y⊤XX⊤y

C = y⊤XX⊤XX⊤y

After one gradient step with exact line search on the primal objective function, we

have w = B
C+λB

X⊤y, and the primal value (2.2) is

1

2
A− 1

2

B2

C + λB
.

For the dual optimization, after one gradient step, α = λA
B+λA

yand by (2.6),

w = A
B+λA

X⊤y. The primal value is then

1

2
A +

1

2

„

A

B + λA

«2

(C + λB)−
AB

B + λA
.

The difference between these two quantities is

1

2

„

A

B + λA

«2

(C + λB)−
AB

B + λA
+

1

2

B2

C + λB
=

1

2

(B2 −AC)2

(B + λA)2(C + λB)
≥ 0.

This proves that if ones does only one gradient step, one should do it on the primal

instead of the dual, because one will get a lower primal value this way.

Now note that by the Cauchy-Schwarz inequality B2 ≤ AC, and there is equality

only if XX⊤y and y are aligned. In that case the above expression is zero: the

primal and dual steps are as efficient. That is what happens on the left side of

Figure 2.1: when n ≪ d, since X has been generated according to a Gaussian

distribution, XX⊤ ≈ dI and the vectors XX⊤y and y are almost aligned.

2.B Optimization with an offset

We now consider a joint optimization on

b

β

!

of the function

f(x) =

n
∑

i=1

βik(xi,x) + b.

The augmented Hessian (cf (2.15)) is

2

1⊤I01 1⊤I0K

KI01 λK + KI0K

!

,

where 1 should be understood as a vector of all 1.

54 Training a Support Vector Machine in the Primal

This can be decomposed as

2

−λ 1⊤

0 K

!

0 1⊤

I01 λI + I0K

!

.

Now the gradient is

∇ = Hβ − 2

(

1⊤

K

)

I0Y

and the equivalent of the update equation (2.16) is

0 1⊤

I01 λI + I0K

!

−1

−λ 1⊤

0 K

!

−1

1⊤

K

!

I0Y =

0 1⊤

I01 λI + I0K

!

−1

0

I0Y

!

So instead of solving (2.17), one solves

b

β
sv

!

=

0 1⊤

1 λInsv
+ Ksv

!

−1

0

Ysv

!

.

References

Gökhan Bakır, Léon Bottou, and Jason Weston. Breaking SVM complexity with

cross training. In Proceedings of the 17th Neural Information Processing Systems

Conference, 2005.

Antoine Bordes, Seyda Ertekin, Jason Weston, and Léon Bottou. Fast kernel

classifiers with online and active learning. Technical report, NEC Research

Institute, Princeton, 2005. http://leon.bottou.com/publications/pdf/

huller3.pdf.

Bernhard Boser, Isabelle Guyon, and Vladimir N. Vapnik. A training algorithm

for optimal margin classifiers. In Computational Learing Theory, pages 144–152,

1992.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge

University Press, 2004.

Christopher J. C. Burges. A tutorial on support vector machines for pattern

recognition. Data Mining and Knowledge Discovery, 2(2):121–167, 1998.

Olivier Chapelle, Jason Weston, Léon Bottou, and Vladimir N. Vapnik. Vicinal risk

minimization. In Advances in Neural Information Processing Systems, volume 12.

MIT Press, 2000.

Olivier Chapelle, Vladimir N. Vapnik, Olivier Bousquet, and Sayan Mukherjee.

Choosing multiple parameters for support vector machines. Machine Learning,

46:131–159, 2002.

Ronan Collobert, Samy Bengio, and Yoshua Bengio. A parallel mixture of SVMs

for very large scale problems. Neural Computation, 14(5), 2002.

2.7 Conclusion 55

Nello Cristianini and John Shawe-Taylor. An Introduction to Support Vector

Machines. Cambridge University Press, 2000.

Nando de Freitas, Yang Wang, Maryam Mahdaviani, and Dustin Lang. Fast krylov

methods for n-body learning. In NIPS, 2005.

Greg Fasshauer. Meshfree methods. In M. Rieth and W. Schommers, editors,

Handbook of Theoretical and Computational Nanotechnology. American Scientific

Publishers, 2005.

Shai Fine and Katya Scheinberg. Efficient SVM training using low-rank kernel

representations. Journal of Machine Learning Research, 2:243–264, 2001.

Gene Golub and Charles Van Loan. Matrix Computations. The Johns Hopkins

University Press, Baltimore, 3rd edition, 1996.

Yves Grandvalet and Stéphane Canu. Adaptive scaling for feature selection in

SVMs. In Neural Information Processing Systems, volume 15, 2002.

Alexander Gray and Andrew W. Moore. ’n-body’ problems in statistical learning.

In NIPS, 2000.

Leslie Greengard and Vladimir Rokhlin. A fast algorithm for particle simulations.

Journal of Computational Physics, 73:325–348, 1987.

Thorsten Joachims. Making large-scale SVM learning practical. In Advances

in Kernel Methods - Support Vector Learning. MIT Press, Cambridge,

Massachussetts, 1999.

S. Sathiya Keerthi and Dennis M. DeCoste. A modified finite Newton method for

fast solution of large scale linear SVMs. Journal of Machine Learning Research,

6:341–361, 2005.

George S. Kimeldorf and Grace Wahba. A correspondence between bayesian

estimation on stochastic processes and smoothing by splines. Annals of

Mathematical Statistics, 41:495–502, 1970.

Dustin Lang, Mike Klaas, and Nando de Freitas. Empirical testing of fast kernel

density estimation algorithms. Technical Report UBC TR-2005-03, University of

British Columbia,, 2005.

Yuh-Jye Lee and Olvi L. Mangasarian. RSVM: Reduced support vector machines.

In Proceedings of the SIAM International Conference on Data Mining. SIAM,

Philadelphia, 2001a.

Yuh-Jye Lee and Olvi L. Mangasarian. SSVM: A smooth support vector machine for

classification. Computational Optimization and Applications, 20(1):5–22, 2001b.

O. L. Mangasarian and D. R. Musicant. Lagrangian support vector machines.

Journal of Machine Learning Research, 1:161–177, 2001.

Olvi L. Mangasarian. A finite Newton method for classification. Optimization

Methods and Software, 17:913–929, 2002.

Cheng Soon Ong. Kernels: Regularization and Optimization. PhD thesis, The

Australian National University, 2005.

56 Training a Support Vector Machine in the Primal

Edgar Osuna, Robert Freund, and Frederico Girosi. Support vector machines:

Training and applications. Technical Report AIM-1602, MIT Artificial

Intelligence Laboratory, 1997.

John Platt. Fast training of support vector machines using sequential minimal

optimization. In Advances in Kernel Methods - Support Vector Learninng. MIT

Press, 1998.

Robert Schaback. Creating surfaces from scattered data using radial basis functions.

In M. Daehlen, T. Lyche, and L. Schumaker, editors, Mathematical Methods for

Curves and Surfaces, pages 477–496. Vanderbilt University Press, 1995.

Bernhard Schölkopf and Alexander J. Smola. Learning with kernels. MIT Press,

Cambridge, MA, 2002.

Yirong Shen, Andrew Ng, and Matthias Seeger. Fast gaussian process regression

using kd-trees. In Advances in Neural Information Processing Systems 18, 2006.

Jonathan R. Shewchuk. An introduction to the conjugate gradient method without

the agonizing pain. Technical Report CMU-CS-94-125, School of Computer

Science, Carnegie Mellon University, 1994.

Ingo Steinwart. Sparseness of support vector machines. Journal of Machine

Learning Research, 4:1071–1105, 2003.

Ivor W. Tsang, James T. Kwok, and Pak-Ming Cheung. Core vector machines: fast

SVM training on very large datasets. Journal of Machine Learning Research, 6:

363–392, 2005.

Vladimir N. Vapnik. Statistical Learning Theory. John Wiley & Sons, 1998.

Changjiang Yang, Ramani Duraiswami, and Larry Davis. Efficient kernel machines

using the improved fast gauss transform. In Advances in Neural Information

Processing Systems 16, 2004.

Jian Zhang, Rong Jin, Yiming Yang, and Alexander G. Hauptmann. Modified

logistic regression: An approximation to SVM and its applications in large-

scale text categorization. In Proceedings of the 20th International Conference

on Machine Learning, 2003.

Ji Zhu and Trevor Hastie. Kernel logistic regression and the import vector machine.

Journal of Computational and Graphical Statistics, 14:185–205, 2005.

