
21 Analysis of Benchmarks

In order to assess strengths and weaknesses of different semi-supervised learning
(SSL) algorithms, we invited the chapter authors to apply their algorithms to eight
benchmark data sets. These data sets encompass both artificial and real-world
problems. We provide details on how the algorithms were applied, especially how
hyperparameters were chosen given the few labeled points. Finally, we present and
discuss the empirical performance.

21.1 The Benchmark

21.1.1 Data Sets

The benchmark consists of eight data sets as shown in table 21.1. Three of them
were artificially created in order to create situations that correspond to certain
assumptions (cf. chapter 1); this was done to allow for relating the performance
of the algorithms to those assumptions. The five other benchmark data sets were
derived from real data. It can thus be hoped that the performance on these is
indicative of the performance in real applications.

Table 21.1 Basic properties of benchmark data sets

Data set Classes Dimension Points Comment

g241c 2 241 1500 artificial

g241d 2 241 1500 artificial

Digit1 2 241 1500 artificial

USPS 2 241 1500 imbalanced

COIL 6 241 1500

BCI 2 117 400

Text 2 11,960 1500 sparse discrete

SecStr 2 315 83,679 sparse binary

378 Analysis of Benchmarks

The purpose of the benchmark was to evaluate the power of the presented
algorithms themselves in a way as neutral as possible. Thus ideally the data
preprocessing should be similar for all algorithms; in particular, it should be avoided
that in some cases it takes advantage of domain knowledge, when in others it does
not. To prevent the experimenters from using domain knowledge, we tried to obscure
structure in the data (e.g. by shuffling the pixels in the images), and even to hide the
identity of the data sets (e.g. by also shuffling the data points). Also, we used the
same number of dimensions (241) and points (1500) for most data sets in the same
attempt to obscure the origin of the data and in order to increase the comparability
of the results. However, we did provide information as to which data sets originate
from images and which from text.

All data sets are available for further research at http://www.kyb.tuebingen.

mpg.de/ssl-book/.

g241c This data set was generated such that the cluster assumption holds, i.e. the
classes correspond to clusters, but the manifold assumption does not. First, 750
points were drawn from each of two unit-variance isotropic Gaussians (i.e., from
N(µi, I)), the centers of which had a distance of 2.5 in a random direction (i.e.,
‖µ1 − µ2‖ = 2.5). The class label of a point represents the Gaussian it was drawn
from. Finally, all dimensions are standardized, i.e. shifted and rescaled to zero-mean
and unit variance. A two-dimensional projection of the data is shown on the left
side of figure 21.1.

−5 0 5−5

0

5

direction that separates class centers

fir
st

 P
CA

 d
ire

ct
io

n
of

 re
m

ai
nd

er

g241c

−6 −4 −2 0 2 4 6−6

−4

−2

0

2

4

6

direction that separates class centers

fir
st

 P
CA

 d
ire

ct
io

n
of

 re
m

ai
nd

er

g241d

Figure 21.1 Two-dimensional projections of g241c (left) and g241d (right). Black
circles, class +1; gray crosses, class -1.

g241d This data set was constructed to have potentially misleading cluster
structure, and no manifold structure. First 375 points were drawn from each of
two unit-variance isotropic Gaussians, the centers of which have a distance of 6
in a random direction; these points form the class +1. Then the centers of two

21.1 The Benchmark 379

further Gaussians for class −1 were fixed by moving from each of the former
centers a distance of 2.5 in a random direction. Again, the identity matrix was
used as covariance matrix, and 375 points were sampled from each new Gaussian.
A two-dimensional projection of the resulting data is shown on the right side of
figure 21.1.

Digit1 This data set was designed to consist of points close to a low-dimensional
manifold embedded into a high-dimensional space, but not to show a pronounced
cluster structure. We therefore started from a system that generates artificial
writings (images) of the digit “1” developed by Matthias Hein (Hein and Audibert,
2005). The images are constructed starting from an abstract “1” implemented
as a function [0, 1]2 → {0, 1}, with the main vertical line ranging from y = 0.2
to y = 0.8 at x = 0.5. There are five degrees of freedom in this function: two
for translations ([−0.13,+0.13] each), one for rotation ([−90◦,+90◦]), one for line
thickness ([0.02, 0.05]), and one for the length of a small line at the bottom ([0, 0.1]).
The resulting function is then discretized to an image of size 16×16. As an example,
the first data point is shown in figure 21.2 (left).

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Figure 21.2 First data point from Digit1 data set. (Left) Original image. (Right) After
rescaling, adding noise, and masking dimensions (x).

We randomly sampled 1500 such images. The class label was set according to the
tilt angle, with the boundary corresponding to an upright digit. To make the task
a bit more difficult, we apply a sequence of transformations to the data as shown
in algorithm 21.1, with σ set to 0.05. The result of this transformation (except for
bias and permutation) applied to the first data point is shown in the right part of
figure 21.2.

Since the data lie close to a five-dimensional manifold, SSL methods based on the
manifold assumption are expected to improve substantially on supervised learning.

380 Analysis of Benchmarks

Algorithm 21.1 Obscure image data

Require: σ {standard deviation of random noise}
1: randomly select and permute 241 columns (features)
2: add to each column a random bias drawn from N(0, 1)
3: multiply each column by a value from unif([−1,−0.5] ∪ [0.5, 1])
4: add independent noise from N(0,σ2I) to each row (data point)

USPS We derived a benchmark data set from the famous USPS set of handwrit-
ten digits as follows. We randomly drew 150 images of each of the ten digits. The
digits “2” and “5” were assigned to the class +1, and all the others formed class
−1. The classes are thus imbalanced with relative sizes of 1:4. We also expect both
the cluster assumption and the manifold assumption to hold.

To prevent people from realizing the origin of this benchmark data set and
exploiting its known structure (e.g. the spatial relationship of features in the image),
we again obscured the data by application of algorithm 21.1, this time with σ = 0.1.
Figure 21.3 illustrates the impact.

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Figure 21.3 Fourth data point from the USPS data set. (Left) Original image. (Right)
After rescaling, adding noise, and masking dimensions (x).

COIL The Columbia object image library (COIL-100) is a set of color images
of 100 different objects taken from different angles (in steps of 5 degrees) at a
resolution of 128 × 128 pixels (Nene et al., 1996).1 To create our data set, we first
downsampled the red channel of each image to 16 × 16 pixels by averaging over
blocks of 8 × 8 pixels. We then randomly selected 24 of the 100 objects (with
24 ∗ 360/5 = 1728 images). The set of 24 objects was partitioned into six classes of
four objects each. We then randomly discarded 38 images of each class, to leave 250

1. at http://www1.cs.columbia.edu/CAVE/research/softlib/coil-100.html

21.1 The Benchmark 381

each. Finally, we applied algorithm 21.1 (with σ = 2) to hide the image structure
from the benchmark participants. Figure 21.4 gives an illustration.

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Figure 21.4 First data point from the COIL data set. (Left) Original image. (Right)
After rescaling, adding noise, and masking dimensions (x).

BCI This data set originates from research toward the development of a brain
computer interface (BCI) (Lal et al., 2004). A single person (subject C) performed
400 trials in each of which he imagined movements with either the left hand (class
-1) or the right hand (class +1). In each trial, EEG (electroencephalography) was
recorded from 39 electrodes. An autoregressive model of order 3 was fitted to each
of the resulting 39 time series. The trail was represented by the total of 117 = 39∗3
fitted parameters. We thank Navin Lal for providing these data.

Text This is the 5 comp.* groups from the Newsgroups data set and the goal is to
classify the ibm category versus the rest (Tong and Koller, 2001). We are thankful to
Simon Tong for providing this data set. A tf-idf (term frequency – inverse document
frequency) encoding resulted in a sparse representation with 11,960 dimensions.
For the benchmark, 750 points of each class have been randomly selected and the
features randomly permuted.

SecStr The main purpose of this benchmark data set is to investigate how far
current methods can cope with large-scale application. The task is to predict the
secondary structure of a given amino acid in a protein based on a sequence window
centered around that amino acid. Our data set is based on the CB513 set,2 which
was created by Cuff and Barton and consists of 513 proteins (Cuff and Barton,
1999). The 513 proteins consist of a total of 84,119 amino acids, of which 440 were
X, Z, or B, and were therefore not considered.

2. e.g. at http://www.compbio.dundee.ac.uk/~www-jpred/data/pred_res/

382 Analysis of Benchmarks

For the remaining 83,679 amino acids, a symmetric sequence window of amino
acids [-7,+7] was used to generate the input x. Positions before the beginning or
after the end of the protein are represented by a special (21st) letter. Each letter
is represented by a sparse binary vector of length 21 such that the position of
the single 1 indicates the letter. The 28,968 α-helical and 18,888 β-sheet protein
positions were collectively called class -1, while the 35,823 remaining points (“coil”)
formed class +1.

We supplied another 1,189,472 unlabeled data points. However, none of the
benchmark participants chose to utilize these data in their experiments.

21.1.2 Experimental Setup

We decided to carry out the experiments in the transductive setting (cf. chapter 1):transductive
setting the test set coincides with the set of unlabeled points. First, this is most economical

in terms of the required amount of data points. Second, this poses the smallest
requirements to participating methods. Otherwise it would have been necessary
to develop and implement “out-of-sample extensions” (e.g. Bengio et al. (2004b))
for the inherently transductive algorithms. We expect the prediction accuracy on
the unlabeled points to be similar to that achieved on out-of-sample points (after
having trained on the same sets of labeled and unlabeled points). Recall, however,
that transductive methods have to be retrained for every new set of test data, which
may be prohibitive in some practical applications. On the other hand, the retraining
offers the potential to learn from an increasing amount of unlabeled data, namely
the accumulated test points. This potential is wasted when an inductive classifier
is trained only once and from there on used.

An important question is how many labeled points are required to achieve decent
classification accuracy. To shed some light on this, we equipped the benchmark data
sets with subsets of labeled points of different sizes. More precisely, the number ofnumbers of

labeled points labeled points is either 10 or 100 for all data sets except for SecStr, for which it
is 100, 1000, or 10,000. In order to make the accuracy estimates derived from the
experiments robust and independent of coincidental properties of the chosen points,
we devised twelve subsets for each combination of data set and number of labeled
points (ten for data set SecStr). When choosing the subsets of labeled points, we
take care to pick at least one point from each class.

Since the unions of the sets of labeled points already cover substantial parts
of the entire data sets, we provided the labels of all points to the participants of
the benchmarks. This allowed for finding hyperparameter values by minimizing the
test error, which is not possible in real applications; however, the results of thismodel selection
procedure can be useful to judge the potential of a method. To obtain results that
are indicative of real world performance, the model selection has to be performed
using only the small set of labeled points.

21.2 Application of SSL Methods 383

Table 21.2 TSVM results. For the linear kernel the algorithm described in chapter 6
has been used, for the nonlinear kernel the one of (Chapelle and Zien, 2005).

g241c g241d Digit1 USPS COIL BCI Text

Linear 20.95 46.35 20.59 30.66 50.04 28.60

Nonlinear 24.71 50.08 17.77 25.20 67.50 49.15 31.21
n = 10

Linear 18.18 23.76 18.05 21.12 42.67 22.31

Nonlinear 18.46 22.42 6.15 9.77 25.80 33.25 24.52
n = 100

21.2 Application of SSL Methods

A major problem in the application of SSL methods to problems with very few
labeled data points is the model selection. In the following we describe for each
method how this was approached. Unless mentioned otherwise, the experiments
have been conducted by the authors of the corresponding chapters.

Several authors have provided results corresponding to different variations of
their algorithm. In order to keep the final results table as concise as possible, we
have in these cases compared them and preselected the best one.

Finally, all the results reported on the tables below are test errors in %.

21.2.1 Transductive Support Vector Machines

Thorsten Joachims has reported results for the transductive support vector machine
(TSVM) algorithm described in chapter 6 and for the spectral graph transducer
(SGT) (Joachims, 2003). He used the code available on his webpage.

No model selection or parameter tuning has been performed, and according
to Joachims the results are likely to be improved by appropriate preprocessing
and/or model selection. For TSVM, a linear kernel was used and C was fixed to
C−1 = 1

n

∑n
i=1 ||xi||2. For the SGT algorithm, the hyperparameters were set as in

(Joachims, 2003): C = 3200, d = 80, and k = 100.
Since we believe that on some data sets nonlinearity might be important, we ran

our own implementation of TSVM (Chapelle and Zien, 2005) with a radial basis
function (RBF) kernel. Its width was chosen as the median of the pairwise distances
and C was fixed to 100. Results are presented in table 21.2. The tables at the end
of this chapter will refer to the nonlinear version.

21.2.2 Entropy Regularization

The method described in chapter 9 can be kernelized, but the experiments have been
reported using a linear classifier. The hyperparameters (λ and weight decay) have
been chosen by cross-validation. In case of a tie the smaller λ and the larger weight
decay have been selected. Since the algorithm is similar to TSVM (cf. section 21.2.1)

384 Analysis of Benchmarks

Table 21.3 Performances of the entropy regularization method (cf. chapter 9). Because
of the links with TSVM and the use of a linear classifier, the comparison with linear TSVM
(see table 21.2) is relevant.

g241c g241d Digit1 USPS COIL BCI Text

Entropy-Reg. 47.36 45.81 24.44 20.25 66.53 47.71 42.07

Linear TSVM 20.95 46.35 20.59 30.66 50.04 28.60
n = 10

Entropy-Reg. 20.97 25.36 7.28 12.21 29.48 28.89 24.86

Linear TSVM 18.18 23.76 18.05 21.12 42.67 22.31
n = 100

and a linear class of function has been used, we decided to compare the results with
those of the linear TSVM. The comparison is shown in table 21.3.

21.2.3 Data-Dependent Regularization

The experiments were run using the distributed propagation data-dependent reg-
ularization, which is applicable to both relational data and data derived from a
metric. The most important modeling decision in applying data-dependent regu-
larization is the selection of the regions that bias label similarity. In the absence
of domain knowledge, k-nearest neighbor regions, centered at each data point as
induced by the default Euclidean distance metric, were considered.

In order to determine the number of points in each region tenfold cross-validation
experiments were run. For this purpose, points that were graph-disconnected from
training data were always treated as errors; this encouraged selecting a k that makes
the information regularization graph connected.

The weight of labeled training data against unlabeled data, λ, was set to 0,
meaning that the posterior labels of training data were not allowed to change
from their given values. The regularization iteration proceeded until the change
in parameters became insignificant.

As a result of data-dependent regularization, each previously unlabeled point
now had a probabilistic class label. This probabilistic class label was converted to a
real label by thresholding the probability. The threshold was applied as an additive
term to the log probability of each class. Then the class assigned by the classifier
was determined by maximizing the threshold-adjusted (log) probability.

Proper selection of the threshold requires cross-validation. However, for computa-
tional efficiency reasons the authors cross-validated only between two scenarios: the
first, in which the threshold applied to each class is 0, which corresponds to treating
the output of information regularization as plain probabilities; and the second, in
which the threshold of each run is optimized so that the resulting class frequency
on the unlabeled data matches the empirical class frequency on the labeled ob-
servations. Data sets 1, 3, 4, and 6 preferred the first algorithm for selecting the
threshold (that is, no threshold), while data sets 2, 5, and 7 preferred the second
algorithm.

21.2 Application of SSL Methods 385

Table 21.4 Influence of the class mass normalization (CMN, cf. chapter 11)

g241c g241d Digit1 USPS COIL BCI Text

Without CMN 50.07 49.47 19.66 19.63 61.50 50.66 49.99

With CMN 39.96 46.55 9.80 13.61 59.63 50.36 40.79
n = 10

Without CMN 39.37 36.42 3.17 10.65 10.01 46.92 30.54

With CMN 22.05 28.20 3.15 6.36 10.03 46.22 25.71
n = 100

21.2.4 Label Propagation and Quadratic Criterion

A fully connected graph with an RBF kernel has been chosen for the algorithm
described in chapter 11. More precisely, the cost function (11.11) is minimized
giving the closed-form solution (11.12). The kernel bandwidth σ was selected in the
following way:

For data sets with 100 labeled examples, by cross-validation on the first split, the
same σ being used on all other splits

For data sets with 10 labeled examples, with the following basic heuristic: σ = d/3,
where d is the estimated average distance between a point in the data set and its
10th nearest neighbor

The tradeoff coefficient µ was set to 10−6.
As shown in table 21.4, the class mass normalization (cf. section 11.5) seemed to

be very important, and later results are reported using this technique.

21.2.5 The Manifold Basis of Semi-Supervised Learning

Experiments have been conducted using the semi-supervised kernel introduced in
section 12.4. This kernel was used either in an SVM or in regularized least squares
(RLS; aka kernel ridge regression).

The kernel is of the form

K̃(x, z) = K(x, z) − k#
x (I + rLpG)−1Lpkz,

where K(x, z) is a base kernel, [kx]i = K(xi, x), G is the Gram matrix (of size
l + u), L is the normalized graph Laplacian, and r is the ratio γI

γA
.

The base kernel was chosen to be an RBF with width σ. L is computed from
an adjacency matrix W corresponding to a weighted k nearest neighbors graph

with weights Wij = exp
(
− ||xi−xj ||2

2σG

)
if there is an edge between xi and xj , and

0 otherwise. The width σG is fixed as the mean distance between adjacent nodes
on this graph. The adjacency matrix is symmetrized by setting Wij = Wji for
any non-zero edge weight Wji. The normalized graph Laplacian is computed as
L = I−D−1/2WD−1/2 where D is a diagonal degree matrix given by Dii =

∑
j Wij .

386 Analysis of Benchmarks

For all data sets except Text, k = 5, p = 2 was used. For Text, those values
are k = 50, p = 5. This is based on the experimental experience of the authors:
relatively smaller values of k and p tend to work well for image data sets and larger
values are useful for textual data sets. No further optimization on these parameters
was attempted.

For the multiclass data set, a one-vs.-the-rest strategy was used. For each of
the classifiers, the bias b was selected such that a sixth of the unlabeled data was
classified in the positive class (because of a prior on uniform class probabilities for
the six classes).

The hyperparameters were chosen by performing a search over the following grid:

1. regularization parameter γA ∈ {10−6, 10−4, 10−2, 1, 100};
2. base kernel width σ ∈ {σ0

8 , σ0
4 , σ0

2 ,σ0, 2σ0, 4σ0, 8σ0}, where σ0 is the mean norm
of the feature vectors in the data set;

3. ratio r = γI

γA
∈ {0, 10−4, 10−2, 1, 100, 104, 106}.

For data sets COIL and SecStr, the best mean test error across splits was
reported. For other data sets, the model selection criterion used was either

fivefold cross-validation error for 100 labeled points, or

for 10 labeled points, the normalized cut, y!Lpy
|i,yi=1| |i,yi=−1| , where y is the vector

of predicted labels.

Data set 8 was treated differently due to its size. The linear Laplacian support
vector machine/regularized least squares (SVM/RLS) was run as described in
section 12.5 and (Keerthi and DeCoste, 2005). The values k = 5, p = 4 were
set based on a crude search. Efficient nonlinear methods are currently under
development and may possibly return better performance on this data set.

It is important to note that Laplacian SVM/RLS also provides out-of-sample
prediction on completely unseen test points. Experimental results on data set
Digit1 are provided in chapter 12 Results are presented on table 21.5. Since
LapRLS achieved slightly better performances, we consider this method for the
table at the end of this chapter.

21.2.6 Discrete Regularization

This method consists in minimizing (13.12) with p = 2 as explained in section 13.3.1.
The experiments have been carried out by Mingrui Wu. The value µ was set to 0.05.
A k-nearest neighbor graph was constructed with weights on edges (i, j) computed
as exp(−γ||xi − xj ||2). The values for k and γ were selected by tenfold cross-
validation in the sets {5, 10, 20, 50,∞} and { 1

64 , 1
16 , 1

4 , 1, 4, 16, 64} respectively. The
input data are normalized such that the 1

c2 quantile of the pairwise distances equals
1, where c is number of classes.

21.2 Application of SSL Methods 387

Table 21.5 Semi-supervised kernel (chapter 12). No MS stands for “no model selection”:
this is the best mean test error achieved across all hyperparameter values.

g241c g241d Digit1 USPS COIL BCI Text

LapRLS 43.95 45.68 5.44 18.99 – 48.97 33.68

LapRLS – no MS 41.74 41.46 6.54 14.67 54.54 46.35 33.35

LapSVM 46.21 45.15 8.97 19.05 – 49.25 37.28
n = 10

LapSVM – no MS 45.53 43.55 6.58 14.99 56.87 46.43 34.04

LapRLS 24.36 26.46 2.92 4.68 – 31.36 23.57

LapRLS – no MS 23.45 24.77 1.81 4.31 11.92 27.89 23.32

LapSVM 23.82 26.36 3.13 4.70 – 32.39 23.86
n = 100

LapSVM – no MS 23.43 24.66 2.19 4.36 13.21 28.58 23.08

21.2.7 Semi-Supervised Learning with Conditional Harmonic Mixing

This method is used to improve the performance of a supervised base classifier.
A detailed description of its application to five of the benchmark data sets can be
found in chapter 14. In a nutshell, an SVM is trained on the labeled points, and used
to predict an initial (delta-) distribution on each unlabeled point. These are used
to estimate conditional probability distributions that are associated to the edges of
a directed graph with the data points as nodes. The authors took care to make the
method essentially free of hyperparameters by averaging over a number of graphs
constructed in different ways, although they conclude from their experiments that
clever model selection might be able to perform better (cf. chapter 14).

21.2.8 Spectral Methods for Dimensionality Reduction

For the dimensionality methods described in chapter 16, a number k of nearest
neighbors has to be chosen and the manifold dimensionality has to be estimated.
k was set 3 for maximum variance unfolding (MVU), 12 for locally linear embed-
ding (LLE), and 6 for Isomap and Laplacian eigenmaps. The dimensionality was
estimated such that MVU explains 99% of the variance of the data (cf. table 21.6).
After dimensionality reduction, the 1-nearest neighbor algorithm was used.

Table 21.6 First line: number of components kept in the dimensionality reduction;
second line: “true” manifold dimension; third line: estimate of the manifold dimension
according to the method described in (Hein and Audibert, 2005). 3

g241c g241d Digit1 USPS COIL BCI Text

38 33 4 9 3 8 29

241 241 5 ? 1 ? ?

66 63 15 4 2 9 7

388 Analysis of Benchmarks

Table 21.7 Nonlinear dimensionality reduction (chapter 16)

g241c g241d Digit1 USPS COIL BCI Text

Isomap 47.88 46.72 13.65 16.66 63.36 49.00 38.12

LapEig 47.47 45.34 12.04 19.14 67.96 49.94 40.84

LLE 47.15 45.56 14.42 23.34 62.62 47.95 45.32

MVU 48.68 47.28 11.92 14.88 65.72 50.24 39.40
n = 10

PCA 39.38 37.03 21.70 23.40 67.88 49.17 41.65

None 44.05 43.22 23.47 19.82 65.91 48.74 39.44

Isomap 43.93 42.45 3.89 5.81 17.35 48.67 30.11

LapEig 42.14 39.43 2.52 6.09 36.49 48.64 30.92

LLE 43.01 38.20 2.83 6.50 28.71 47.89 32.83

MVU 44.05 43.21 3.99 6.09 32.27 47.42 30.74
n = 100

PCA 33.51 25.92 8.27 9.50 28.41 48.58 28.83

None 40.28 37.49 6.12 7.64 23.27 44.83 30.77

The performances of the different dimensionality reduction methods can be found
in table 21.7. Note that principal components analysis (PCA) can achieve a very
good performance on some data sets; for instance, with 100 labeled points, the test
error is 17.3% on g241c, 9% on g241d, and 27.7% on Text, if, respectively, 1, 3, and
20 components are chosen. For the first two data sets, this is not really surprising
given the artificial nature of the data. For Text, this can be explained by the fact
that PCA performs latent semantic analysis (Deerwester et al., 1990). Finally, note
that additional dimensions would have been helpful for the COIL data set. Indeed,
with 12 components, Isomap achieve a test error of 12% (for 100 labeled points).

21.2.9 Large-Scale Algorithms

The large-scale methods described in chapter 18 use a small set of size m on which
to expand the solution. m was fixed to 100, except for the large-scale data set
SecStr where m was set to 1000.

The length scale σ was selected as explained in section 21.2.4, except that for
ten labeled points, the distance d used in the heuristic σ = d/3 is calculated as the
average distance between a point and its 10th nearest neighbor among m+10 other
points randomly selected.

3. We thank Matthias Hein for having computed those estimates.

21.2 Application of SSL Methods 389

Table 21.8 Large-scale strategies (chapter 18)

g241c g241d Digit1 USPS COIL BCI Text

NoSub 39.96 46.55 9.80 13.61 59.63 50.36 40.79

RandSub 40.11 41.93 15.21 15.64 65.11 49.96 37.37

SmartSub 39.56 42.20 14.19 18.56 65.94 48.31 38.60
n = 10

SmartOnly 39.82 42.24 12.60 16.95 63.97 49.47 38.23

NoSub 22.05 28.20 3.15 6.36 10.03 46.22 25.71

RandSub 23.60 25.85 4.20 7.97 19.74 44.61 25.60

SmartSub 22.07 26.16 4.11 7.51 22.86 44.36 25.71
n = 100

SmartOnly 22.07 25.98 3.50 6.90 15.70 44.78 25.75

Table 21.8 presents results for the following algorithms:

NoSub: No subsampling, i.e. the results of section 21.2.4.

RandSub: Random subsampling.

SmartSub: The method described in algorithm 18.1.

SmartOnly: Training using only a subset of the data selected by algorithm 18.1.
This is to be able to assess the usefulness of actually using the rest of the data in
the cost (cf. matrix CRS in Eq. 18.7).

21.2.10 Cluster Kernels

The kernel proposed in chapter 19 is a product of two kernels:

1. korig is a standard RBF kernel with width σ and ridge C−1. Those two hy-
perparameters have been optimized with the code available at http://www.kyb.

tuebingen.mpg.de/bs/people/chapelle/ams/.

2. kbag resulting from repeated runs of the k-means algorithm. k has been found
by tenfold cross-validation in the set {2, 4, 6, 8, 10, 20, 30, 40, 50}, the kernel korig

being fixed.

Finally, the method mentioned in footnote 2 in chapter 19 was used with λ = 0.5
on data sets COIL and SecStr because it worked better.

21.2.11 Low-Density Separation

This method is not described in the book, but in (Chapelle and Zien, 2005). The
code used to run the experiments is available at http://www.kyb.tuebingen.mpg.
de/bs/people/chapelle/lds/. The hyperparameter ρ is found by cross-validation,
the other hyperparameters being fixed to their default values. The reason for

390 Analysis of Benchmarks

not optimizing on more hyperparameters is that the the model selection becomes
unreliable, especially with only ten labeled points. Note that if the number k of
nearest neighbors is optimized on the test error, the test error can be dramatically
decreased: for instance, on Digit1 with ten labeled points, a test error of 3.7% was
achieved with k = 5. This has to be compared to the 15.6% achieved by cross-
validation on ρ only.

21.2.12 Boosting

Ayhan Demiriz ran experiments on data set SecStr using the assemble algorithm
(Bennett et al., 2002), which is a modified version of AdaBoost for semi-supervised
learning. It turns out that the algorithm was not very well suited for a very small
number of labeled points, as the algorithm stops whenever a weak learner correctly
classifies all labeled points. On the other hand, it seems much better suited for large
data sets, because the run time increases only linearly in the number of labeled and
unlabeled points.

The weak learner was a two-level decision tree. AdaBoost and Assemble have both
been run for 50 iterations. In this case, it seems that semi-supervised learning was
not helpful: AdaBoost achieved 30.8% test error, while Assemble achieved 32.2%.

21.3 Results and Discussion

To compare the results of the different methods, we summarize them in tables.
Tables 21.9 and 21.10 show the mean test errors and the ROC (receiver operating
characteristic) scores for training with 10 labeled points; similarly tables 21.11 and
21.12 for 100 labeled points. The results for SecStr are presented separately in
table 21.13 since the numbers of labeled points differ from the other data sets.
Further, only a small number of methods competed in this benchmark.

Tables 21.9 and 21.11 contain a lot of results and might be a bit difficult to parse.
For this reason, we propose to perform some clustering on the results. Concerning
the data sets, we can identify two main categories:

Manifold-like: The data lie near a low-dimensional manifold. Based on table 21.6,manifold-like
data sets this seems to be the case of data sets Digit1, USPS, COIL, and BCI. For the first

three, this can be easily explained by the fact the data represent images; for BCI,
this is less obvious, but it seems plausible that the signals captured by an EEG
have rather few degrees of freedom.

Cluster-like: The data are clustered, and they tend cluster in such a way that twocluster-like data
sets classes do not share the same cluster. By construction this is the case for data sets

g241c and g241d. We conjecture that Text belongs also to this category, because
cluster-based algorithms (see below) usually perform well on text data. As for the
algorithms, we can also identify two categories, which correspond to the two types

21.3 Results and Discussion 391

Table 21.9 Test errors (%) with 10 labeled training points. Values printed in italics
were obtained by performing model selection w.r.t. the test error.

g241c g241d Digit1 USPS COIL BCI Text

1-NN 44.05 43.22 23.47 19.82 65.91 48.74 39.44

SVM 47.32 46.66 30.60 20.03 68.36 49.85 45.37

21.2.8 MVU + 1-NN 48.68 47.28 11.92 14.88 65.72 50.24 39.40

21.2.8 LEM + 1-NN 47.47 45.34 12.04 19.14 67.96 49.94 40.84

21.2.4 QC + CMN 39.96 46.55 9.80 13.61 59.63 50.36 40.79

21.2.6 Discrete Reg. 49.59 49.05 12.64 16.07 63.38 49.51 40.37

21.2.1 TSVM 24.71 50.08 17.77 25.20 67.50 49.15 31.21

21.2.1 SGT 22.76 18.64 8.92 25.36 – 49.59 29.02

21.2.10 Cluster-Kernel 48.28 42.05 18.73 19.41 67.32 48.31 42.72

21.2.3 Data-Dep. Reg. 41.25 45.89 12.49 17.96 63.65 50.21 –

21.2.11 LDS 28.85 50.63 15.63 17.57 61.90 49.27 27.15

21.2.5 Laplacian RLS 43.95 45.68 5.44 18.99 54.54 48.97 33.68

21.2.7 CHM (normed) 39.03 43.01 14.86 20.53 – 46.90 –

Table 21.10 ROC scores (area under curve; %) with 10 labeled training points.

g241c g241d Digit1 USPS BCI Text

1-NN – – – – – –

SVM 64.68 63.04 88.38 75.56 51.59 67.97

21.2.8 MVU + 1-NN – – – – – –

21.2.8 LEM + 1-NN – – – – – –

21.2.4 QC + CMN 64.24 62.45 96.32 90.76 49.47 70.71

21.2.6 Discrete Reg. 51.75 52.73 91.03 80.65 51.45 53.79

21.2.1 TSVM 82.41 50.65 86.98 68.21 50.92 73.42

21.2.1 SGT 87.41 89.40 97.58 73.08 50.70 80.09

21.2.10 Cluster-Kernel 61.63 77.68 89.49 74.28 51.77 73.09

21.2.3 Data-Dep. Reg. 63.43 56.92 96.22 84.91 50.31 –

21.2.11 LDS 77.35 49.70 90.10 75.88 49.75 80.68

21.2.5 Laplacian RLS 59.23 57.07 99.50 85.70 51.69 76.55

21.2.7 CHM (normed) 64.83 62.29 92.91 81.16 52.75 –

of data sets mentioned above:

Manifold-based: These algorithms come from parts III and IV of this book:manifold-based
algorithms Discrete Reg, QC, Laplacian RLS, CHM, SDE, LEM, SGT. Note in particular that

Discrete Reg and QC minimize a similar cost function, the difference being the
normalization of the Laplacian.

Cluster-based (or low-density separation as explained in part II of the book: Therecluster-based
algorithms are three algorithms in this category which are expected to behave similarly: TSVM,

Data-Dep Reg, Entropy-Reg (see section 21.2.2). Finally, Cluster-Kernel and LDS

also belong to this category, but are not closely related to the former three.
A first conclusion that we can draw from these experiments is that no algorithm

392 Analysis of Benchmarks

Table 21.11 Test errors (%) with 100 labeled training points. Values printed in italics
were obtained by performing model selection w.r.t. the test error.

g241c g241d Digit1 USPS COIL BCI Text

1-NN 40.28 37.49 6.12 7.64 23.27 44.83 30.77

SVM 23.11 24.64 5.53 9.75 22.93 34.31 26.45

21.2.8 MVU + 1-NN 44.05 43.21 3.99 6.09 32.27 47.42 30.74

21.2.8 LEM + 1-NN 42.14 39.43 2.52 6.09 36.49 48.64 30.92

21.2.4 QC + CMN 22.05 28.20 3.15 6.36 10.03 46.22 25.71

21.2.6 Discrete Reg. 43.65 41.65 2.77 4.68 9.61 47.67 24.00

21.2.1 TSVM 18.46 22.42 6.15 9.77 25.80 33.25 24.52

21.2.1 SGT 17.41 9.11 2.61 6.80 – 45.03 23.09

21.2.10 Cluster-Kernel 13.49 4.95 3.79 9.68 21.99 35.17 24.38

21.2.3 Data-Dep. Reg. 20.31 32.82 2.44 5.10 11.46 47.47 –

21.2.11 LDS 18.04 23.74 3.46 4.96 13.72 43.97 23.15

21.2.5 Laplacian RLS 24.36 26.46 2.92 4.68 11.92 31.36 23.57

21.2.7 CHM (normed) 24.82 25.67 3.79 7.65 – 36.03 –

Table 21.12 ROC scores (area under curve; %) with 100 labeled training points.

g241c g241d Digit1 USPS BCI Text

1-NN – – – – – –

SVM 85.57 83.54 99.09 95.76 71.17 84.26

21.2.8 MVU + 1-NN – – – – – –

21.2.8 LEM + 1-NN – – – – – –

21.2.4 QC + CMN 86.40 82.23 99.59 91.11 56.48 84.62

21.2.6 Discrete Reg. 52.81 52.97 98.84 92.24 52.36 71.53

21.2.1 TSVM 88.55 84.18 98.02 92.74 73.09 80.96

21.2.1 SGT 91.74 97.48 99.76 96.72 56.79 85.22

21.2.10 Cluster-Kernel 93.15 98.95 99.36 94.50 70.50 85.90

21.2.3 Data-Dep. Reg. 87.50 74.18 99.81 97.74 54.38 –

21.2.11 LDS 89.37 83.13 99.23 95.62 57.22 84.77

21.2.5 Laplacian RLS 83.54 81.54 99.40 98.65 74.83 85.05

21.2.7 CHM (normed) 81.13 81.36 99.49 96.69 66.32 –

is uniformly better than the others, and that for a given semi-supervised learning
problem, the algorithm needs to be selected carefully as a function of the nature
of the data set. A general rule (which seems obvious a posteriori) is that manifold-
based algorithms should be used for manifold-like data sets, and cluster-based
algorithms should be used for cluster-like data sets.

It should be also noted that model selection was challenging for most of themodel selection
competitors, especially in the case of only 10 labeled points, where the use of cross-
validation can be unreliable. In this respect, the results with 100 labeled points are
expected to be more reliable and to give a better indication of the strength of the
different algorithms.

One of the disappointing results of this benchmark is the Text data set. Indeed,limits of
semi-supervised
learning

it has been shown that semi-supervised learning can be very useful for this type

21.3 Results and Discussion 393

Table 21.13 Results for SecStr for different numbers of labeled points. (Left) Test error
(%). (Right) ROC score (%). Values printed in italics were obtained by performing model
selection w.r.t. the test error.

100 1000 10000 100 1000 10000

SVM 44.59 33.71 – 59.09 70.86 –

Cluster Kernel 42.95 34.03 – 58.79 70.37 –

QC randsub (CMN) 42.32 40.84 – 54.77 59.99 –

QC smartonly (CMN) 42.14 40.71 – 55.59 60.25 –

QC smartsub (CMN) 42.26 40.84 – 55.35 60.08 –

Boosting (Assemble) – – 32.21 – – –

LapRLS 42.59 34.17 28.55 59.02 70.33 77.95

LapSVM 43.42 33.96 28.53 58.40 70.54 77.95

of data (Joachims, 1999; Nigam et al., 2000; Chapelle and Zien, 2005), but the
results from tables 21.9 and 21.11 exhibit only a moderate improvement over plain
supervised learning. The fact that the data set has been constructed in a one-vs-rest
setting could be a possible explanation (cf. section 21.1.1). To test this hypothesis
we tried to classify only two topics, namely ibm and x. A linear SVM achieved a
mean test error of 12% (over several subsets of 100 labeled points), while a linear
TSVM was able to reduce the test error to 2%. Further investigation is required to
understand why such a large improvement is possible in this case.

Finally, it is worth pointing out that one should not necessarily expect an
improvement with unlabeled data. The data sets BCI and SecStr seem to be
examples where it is difficult to do better than standard supervised learning.
At least for SecStr, this might be a problem of the amounts of unlabeled data
that are utilized. Current approaches to protein secondary structure prediction use
essentially all known protein sequences, which amount to tens or hundreds of million
unlabeled data points. This is only possible due to the use of a very simple strategy:
roughly speaking, each protein is represented by an average of the proteins in its
neighborhood (Rost and Sander, 1993). Clearly, bringing the more sophisticated
(and probably more powerful) SSL methods to this scale is an important open
problem.

In all cases, we believe that there is no “black box” solution and that a good
understanding of the nature of the data is required to perform successful semi-
supervised learning. Indeed, in supervised learning, it seems that a good generic
learning algorithm can perform well on a lot of real-world data sets without specific
domain knowledge. In contrast, semi-supervised learning is possible only due to
the special form of the data distribution that correlates the label of a data point
with its situation within the distribution; therefore it seems much more difficult
to design a general semi-supervised classifier. Instead, powerful semi-supervised
learning algorithms distinguish themselves through the ability to make use of
available prior knowledge about the domain and data distribution, in order to relate
data and labels and improve classification. 4

4. Part of this paragraph has been inspired by comments from Adrian Corduneanu.

